clearml/examples/frameworks/megengine/megengine_mnist.py

118 lines
3.7 KiB
Python

import argparse
import os
import sys
from tempfile import gettempdir
import numpy as np
try:
import megengine as mge
import megengine.functional as F
import megengine.module as M
from megengine.autodiff import GradManager
from megengine.data import DataLoader, RandomSampler
from megengine.data.dataset import MNIST
from megengine.data.transform import Compose, Normalize, Pad, ToMode
from megengine.optimizer import SGD
except ImportError:
raise ImportError(
"megengine package is missing, you can install it using pip: pip install megengine"
if sys.version_info.minor <= 8
else "MegEngine does not support python version >= 3.9"
)
from clearml import Task
from tensorboardX import SummaryWriter
class Net(M.Module):
def __init__(self):
super().__init__()
self.conv0 = M.Conv2d(1, 20, kernel_size=5, bias=False)
self.bn0 = M.BatchNorm2d(20)
self.relu0 = M.ReLU()
self.pool0 = M.MaxPool2d(2)
self.conv1 = M.Conv2d(20, 20, kernel_size=5, bias=False)
self.bn1 = M.BatchNorm2d(20)
self.relu1 = M.ReLU()
self.pool1 = M.MaxPool2d(2)
self.fc0 = M.Linear(500, 64, bias=True)
self.relu2 = M.ReLU()
self.fc1 = M.Linear(64, 10, bias=True)
def forward(self, x):
x = self.conv0(x)
x = self.bn0(x)
x = self.relu0(x)
x = self.pool0(x)
x = self.conv1(x)
x = self.bn1(x)
x = self.relu1(x)
x = self.pool1(x)
x = F.flatten(x, 1)
x = self.fc0(x)
x = self.relu2(x)
x = self.fc1(x)
return x
def build_dataloader():
train_dataset = MNIST(root=gettempdir(), train=True, download=True)
dataloader = DataLoader(
train_dataset,
transform=Compose([Normalize(mean=0.1307 * 255, std=0.3081 * 255), Pad(2), ToMode("CHW"),]),
sampler=RandomSampler(dataset=train_dataset, batch_size=64),
)
return dataloader
def train(dataloader, args):
writer = SummaryWriter("runs")
net = Net()
net.train()
optimizer = SGD(net.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.wd)
gm = GradManager().attach(net.parameters())
epoch_length = len(dataloader)
for epoch in range(args.epoch):
for step, (batch_data, batch_label) in enumerate(dataloader):
batch_label = batch_label.astype(np.int32)
data, label = mge.tensor(batch_data), mge.tensor(batch_label)
with gm:
pred = net(data)
loss = F.loss.cross_entropy(pred, label)
gm.backward(loss)
optimizer.step().clear_grad()
if step % 50 == 0:
print("epoch:{}, iter:{}, loss:{}".format(epoch + 1, step, float(loss))) # noqa
writer.add_scalar("loss", float(loss), epoch * epoch_length + step)
if (epoch + 1) % 5 == 0:
mge.save(
net.state_dict(), os.path.join(gettempdir(), f"mnist_net_e{epoch + 1}.pkl"),
) # noqa
def main():
task = Task.init(project_name="examples", task_name="MegEngine MNIST train") # noqa
parser = argparse.ArgumentParser(description="MegEngine MNIST Example")
parser.add_argument(
"--epoch", type=int, default=10, help="number of training epoch(default: 10)",
)
parser.add_argument("--lr", type=float, default=0.01, help="learning rate(default: 0.01)")
parser.add_argument(
"--momentum", type=float, default=0.9, help="SGD momentum (default: 0.9)",
)
parser.add_argument(
"--wd", type=float, default=5e-4, help="SGD weight decay(default: 5e-4)",
)
args = parser.parse_args()
dataloader = build_dataloader()
train(dataloader, args)
if __name__ == "__main__":
main()