mirror of
https://github.com/clearml/clearml
synced 2025-01-31 09:07:00 +00:00
67 lines
2.0 KiB
Python
67 lines
2.0 KiB
Python
try:
|
|
import autokeras as ak
|
|
except ImportError:
|
|
import sys
|
|
|
|
raise ImportError(
|
|
"autokeras package is missing, you can install it using pip: pip install autokeras"
|
|
if sys.version_info.minor > 6
|
|
else "AutoKeras does not support python version < 3.7"
|
|
)
|
|
|
|
import numpy as np
|
|
import tensorflow as tf
|
|
from tensorflow import keras
|
|
|
|
from clearml import Task
|
|
|
|
# Connecting ClearML with the current process,
|
|
# from here on everything is logged automatically
|
|
task = Task.init(project_name="autokeras", task_name="AutoKeras IMDB example with scalars")
|
|
|
|
|
|
def imdb_raw():
|
|
max_features = 20000
|
|
index_offset = 3 # word index offset
|
|
|
|
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.imdb.load_data(
|
|
num_words=max_features, index_from=index_offset
|
|
)
|
|
x_train = x_train
|
|
y_train = y_train.reshape(-1, 1)
|
|
x_test = x_test
|
|
y_test = y_test.reshape(-1, 1)
|
|
|
|
word_to_id = tf.keras.datasets.imdb.get_word_index()
|
|
word_to_id = {k: (v + index_offset) for k, v in word_to_id.items()}
|
|
word_to_id["<PAD>"] = 0
|
|
word_to_id["<START>"] = 1
|
|
word_to_id["<UNK>"] = 2
|
|
|
|
id_to_word = {value: key for key, value in word_to_id.items()}
|
|
x_train = list(map(lambda sentence: " ".join(id_to_word[i] for i in sentence), x_train))
|
|
x_test = list(map(lambda sentence: " ".join(id_to_word[i] for i in sentence), x_test))
|
|
x_train = np.array(x_train, dtype=str)
|
|
x_test = np.array(x_test, dtype=str)
|
|
return (x_train, y_train), (x_test, y_test)
|
|
|
|
|
|
# Prepare the data.
|
|
(x_train, y_train), (x_test, y_test) = imdb_raw()
|
|
print(x_train.shape) # (25000,)
|
|
print(y_train.shape) # (25000, 1)
|
|
print(x_train[0][:50]) # <START> this film was just brilliant casting <UNK>
|
|
|
|
# Initialize the TextClassifier
|
|
clf = ak.TextClassifier(max_trials=2)
|
|
|
|
# Tensorboard Callbacks
|
|
tb_callbacks = [keras.callbacks.TensorBoard(log_dir="log")]
|
|
|
|
# Search for the best model.
|
|
clf.fit(x_train, y_train, epochs=2, callbacks=tb_callbacks)
|
|
|
|
# Evaluate on the testing data.
|
|
clf_accuracy = clf.evaluate(x_test, y_test)
|
|
print("Accuracy:", clf_accuracy)
|