clearml/trains/model.py
2019-06-10 20:02:11 +03:00

1007 lines
38 KiB
Python

import abc
import os
import re
import tarfile
import zipfile
from tempfile import mkdtemp, mkstemp
import pyparsing
import six
from .backend_api.services import models
from pathlib2 import Path
from pyhocon import ConfigFactory, HOCONConverter
from .backend_interface.util import validate_dict, get_single_result, mutually_exclusive
from .debugging.log import get_logger
from .storage import StorageHelper
from .utilities.enum import Options
from .backend_interface import Task as _Task
from .backend_interface.model import Model as _Model, DummyModel as _DummyModel
from .config import running_remotely, get_cache_dir
ARCHIVED_TAG = "archived"
class Framework(Options):
"""
Optional frameworks for output model
"""
tensorflow = 'TensorFlow'
tensorflowjs = 'TensorFlow_js'
tensorflowlite = 'TensorFlow_Lite'
pytorch = 'PyTorch'
caffe = 'Caffe'
caffe2 = 'Caffe2'
onnx = 'ONNX'
keras = 'Keras'
mknet = 'MXNet'
cntk = 'CNTK'
torch = 'Torch'
darknet = 'Darknet'
paddlepaddle = 'PaddlePaddle'
scikitlearn = 'ScikitLearn'
__file_extensions_mapping = {
'.pb': (tensorflow, tensorflowjs, onnx, ),
'.meta': (tensorflow, ),
'.pbtxt': (tensorflow, onnx, ),
'.zip': (tensorflow, ),
'.tgz': (tensorflow, ),
'.tar.gz': (tensorflow, ),
'model.json': (tensorflowjs, ),
'.tflite': (tensorflowlite, ),
'.pth': (pytorch, ),
'.caffemodel': (caffe, ),
'.prototxt': (caffe, ),
'predict_net.pb': (caffe2, ),
'predict_net.pbtxt': (caffe2, ),
'.onnx': (onnx, ),
'.h5': (keras, ),
'.hdf5': (keras, ),
'.keras': (keras, ),
'.model': (mknet, cntk, ),
'-symbol.json': (mknet, ),
'.cntk': (cntk, ),
'.t7': (torch, ),
'.cfg': (darknet, ),
'__model__': (paddlepaddle, ),
'.pkl': (scikitlearn, keras, ),
}
@classmethod
def _get_file_ext(cls, framework, filename):
mapping = cls.__file_extensions_mapping
filename = filename.lower()
def find_framework_by_ext(framework_selector):
for ext, frameworks in mapping.items():
if frameworks and filename.endswith(ext):
fw = framework_selector(frameworks)
if fw:
return (fw, ext)
# If no framework, try finding first framework matching the extension, otherwise (or if no match) try matching
# the given extension to the given framework. If no match return an empty extension
return (
(not framework and find_framework_by_ext(lambda frameworks_: frameworks_[0]))
or find_framework_by_ext(lambda frameworks_: framework if framework in frameworks_ else None)
or (framework, filename.split('.')[-1] if '.' in filename else '')
)
@six.add_metaclass(abc.ABCMeta)
class BaseModel(object):
_package_tag = "package"
@property
def id(self):
"""
return the id of the model (string)
:return: model id (string)
"""
return self._get_model_data().id
@property
def name(self):
"""
return the name of the model (string)
:return: model name (string)
"""
return self._get_model_data().name
@name.setter
def name(self, value):
"""
Update the model name
:param value: model name (string)
"""
self._get_base_model().update(name=value)
@property
def comment(self):
"""
return comment/description of the model (string)
:return: model description (string)
"""
return self._get_model_data().comment
@comment.setter
def comment(self, value):
"""
Update the model comment/description of the model (string)
:param value: model comment/description (string)
"""
self._get_base_model().update(comment=value)
@property
def tags(self):
"""
Return the list of tags the model has
:return: list of strings (tags)
"""
return self._get_model_data().tags
@tags.setter
def tags(self, value):
"""
Update the model list of tags (list of strings)
:param value: list of strings as tags
"""
self._get_base_model().update(tags=value)
@property
def config_text(self):
"""
returns a string representing the model configuration (from prototxt to ini file or python code to evaluate)
:return: string
"""
return _Model._unwrap_design(self._get_model_data().design)
@property
def config_dict(self):
"""
returns a configuration dictionary parsed from the design text,
usually representing the model configuration (from prototxt to ini file or python code to evaluate)
:return: Dictionary
"""
return self._text_to_config_dict(self.config_text)
@property
def labels(self):
"""
Return the labels enumerator {str(label): integer(id)} as saved in the model object
:return: labels_dict, dictionary with labels (text) keys and values as integers
"""
return self._get_model_data().labels
@property
def task(self):
return self._task
@property
def published(self):
return self._get_base_model().locked
@property
def framework(self):
return self._get_model_data().framework
def __init__(self, task=None):
super(BaseModel, self).__init__()
self._log = get_logger()
self._task = None
self._set_task(task)
def get_weights(self):
"""
Download the base model and returns a string of locally stored filename
:return: string to locally stored file
"""
# download model (synchronously) and return local file
return self._get_base_model().download_model_weights()
def get_weights_package(self, return_path=False):
"""
Download the base model package, extract the files and return list of locally stored filenames
:param return_path: if True the model weights are downloaded into a
temporary directory and the directory path is returned, instead of list of files
:return: string to locally stored file
"""
# check if model was packaged
if self._package_tag not in self._get_model_data().tags:
raise ValueError('Model is not packaged')
# download packaged model
packed_file = self.get_weights()
# unpack
target_folder = mkdtemp(prefix='model_package_')
if not target_folder:
raise ValueError('cannot create temporary directory for packed weight files')
for func in (zipfile.ZipFile, tarfile.open):
try:
obj = func(packed_file)
obj.extractall(path=target_folder)
break
except (zipfile.BadZipfile, tarfile.ReadError):
pass
else:
raise ValueError('cannot extract files from packaged model at %s', packed_file)
if return_path:
return target_folder
target_files = list(Path(target_folder).glob('*'))
return target_files
def publish(self):
"""
Set the model to 'published' and set it for public use.
If the model is already published, this method is a no-op.
"""
if not self.published:
self._get_base_model().publish()
def _running_remotely(self):
return bool(running_remotely() and self._task is not None)
def _set_task(self, value):
if value is not None and not isinstance(value, _Task):
raise ValueError('task argument must be of Task type')
self._task = value
@abc.abstractmethod
def _get_model_data(self):
pass
@abc.abstractmethod
def _get_base_model(self):
pass
def _set_package_tag(self):
if self._package_tag not in self.tags:
self.tags.append(self._package_tag)
self._get_base_model().update(tags=self.tags)
@staticmethod
def _config_dict_to_text(config):
if not isinstance(config, dict):
raise ValueError("Model configuration only supports dictionary objects")
try:
# hack, pyhocon is not very good with dict conversion so we pass through json
try:
import json
text = json.dumps(config)
text = HOCONConverter.convert(ConfigFactory.parse_string(text), 'hocon')
except Exception:
# fallback pyhocon
text = HOCONConverter.convert(ConfigFactory.from_dict(config), 'hocon')
except Exception:
raise ValueError("Could not serialize configuration dictionary:\n", config)
return text
@staticmethod
def _text_to_config_dict(text):
if not isinstance(text, six.string_types):
raise ValueError("Model configuration parsing only supports string")
try:
return ConfigFactory.parse_string(text).as_plain_ordered_dict()
except pyparsing.ParseBaseException as ex:
pos = "at char {}, line:{}, col:{}".format(ex.loc, ex.lineno, ex.column)
six.raise_from(ValueError("Could not parse configuration text ({}):\n{}".format(pos, text)), None)
except Exception:
six.raise_from(ValueError("Could not parse configuration text:\n{}".format(text)), None)
@staticmethod
def _resolve_config(config_text=None, config_dict=None):
mutually_exclusive(config_text=config_text, config_dict=config_dict, _require_at_least_one=False)
if config_dict:
return InputModel._config_dict_to_text(config_dict)
return config_text
class InputModel(BaseModel):
"""
Load an existing model in the system, search by model id.
The Model will be read-only and can be used to pre initialize a network
We can connect the model to a task as input model, then when running remotely override it with the UI.
"""
_EMPTY_MODEL_ID = _Model._EMPTY_MODEL_ID
@classmethod
def import_model(
cls,
weights_url,
config_text=None,
config_dict=None,
label_enumeration=None,
name=None,
tags=None,
comment=None,
logger=None,
is_package=False,
create_as_published=False,
framework=None,
):
"""
Create a model from pre-existing model file (link must be valid), and model configuration.
If the url to the weights file already exists, the import process will stop with a warning
and automatically it will try to import the model that was found.
The Model will be read-only and can be used to pre initialize a network
We can connect the model to a task as input model, then when running remotely override it with the UI.
Load model based on id, returned object is read-only and can be connected to a task
That is, we can override the input model when running remotely
:param weights_url: valid url for the weights file (string).
examples: "https://domain.com/file.bin" or "s3://bucket/file.bin" or "file:///home/user/file.bin".
NOTE: if a model with the exact same URL exists, it will be used, and all other arguments will be ignored.
:param config_text: model configuration (unconstrained text string). usually the content of
configuration file. If `config_text` is not None, `config_dict` must not be provided.
:param config_dict: model configuration parameters (dict).
If `config_dict` is not None, `config_text` must not be provided.
:param label_enumeration: dictionary of string to integer, enumerating the model output to labels
example: {'background': 0 , 'person': 1}
:param name: optional, name for the newly imported model
:param tags: optional, list of strings as tags
:param comment: optional, string description for the model
:param logger: The logger to use. If None, use the default logger
:param is_package: Boolean. Indicates that the imported weights file is a package.
If True, and a new model was created, a package tag will be added.
:param create_as_published: Boolean. If True, and a new model is created, it will be published.
:param framework: optional, string name of the framework of the model or Framework
"""
config_text = cls._resolve_config(config_text=config_text, config_dict=config_dict)
weights_url = StorageHelper.conform_url(weights_url)
result = _Model._get_default_session().send(models.GetAllRequest(
uri=[weights_url],
only_fields=["id", "name"],
tags=["-" + ARCHIVED_TAG]
))
if result.response.models:
if not logger:
logger = get_logger()
logger.debug('A model with uri "{}" already exists. Selecting it'.format(weights_url))
model = get_single_result(
entity='model',
query=weights_url,
results=result.response.models,
log=logger,
raise_on_error=False,
)
logger.info("Selected model id: {}".format(model.id))
return InputModel(model_id=model.id)
base_model = _Model(
upload_storage_uri=None,
cache_dir=get_cache_dir(),
)
from .task import Task
task = Task.current_task()
if task:
comment = 'Imported by task id: {}'.format(task.id) + ('\n'+comment if comment else '')
project_id = task.project
task_id = task.id
else:
project_id = None
task_id = None
if not framework:
framework, file_ext = Framework._get_file_ext(
framework=framework,
filename=weights_url
)
base_model.update(
design=config_text,
labels=label_enumeration,
name=name,
comment=comment,
tags=tags,
uri=weights_url,
framework=framework,
project_id=project_id,
task_id=task_id,
)
this_model = InputModel(model_id=base_model.id)
this_model._base_model = base_model
if is_package:
this_model._set_package_tag()
if create_as_published:
this_model.publish()
return this_model
@classmethod
def empty(
cls,
config_text=None,
config_dict=None,
label_enumeration=None,
):
"""
Create an empty model, so that later we can execute the task in remote and
replace the empty model with pre-trained model file
:param config_text: model configuration (unconstrained text string). usually the content of a config_dict file.
If `config_text` is not None, `config_dict` must not be provided.
:param config_dict: model configuration parameters (dict).
If `config_dict` is not None, `config_text` must not be provided.
:param label_enumeration: dictionary of string to integer, enumerating the model output to labels
example: {'background': 0 , 'person': 1}
"""
design = cls._resolve_config(config_text=config_text, config_dict=config_dict)
this_model = InputModel(model_id=cls._EMPTY_MODEL_ID)
this_model._base_model = m = _Model(
cache_dir=None,
upload_storage_uri=None,
model_id=cls._EMPTY_MODEL_ID,
)
m._data.design = _Model._wrap_design(design)
m._data.labels = label_enumeration
return this_model
def __init__(self, model_id):
"""
Load model based on id, returned object is read-only and can be connected to a task
Notice, we can override the input model when running remotely
:param model_id: id (string)
"""
super(InputModel, self).__init__()
self._base_model_id = model_id
self._base_model = None
@property
def id(self):
return self._base_model_id
def connect(self, task):
"""
Connect current model with a specific task, only supported for preexisting models,
i.e. not supported on objects created with create_and_connect()
When running in debug mode (i.e. locally), the task is updated with the model object
(i.e. task input model is the load_model_id)
When running remotely (i.e. from a daemon) the model is being updated from the task
Notice! when running remotely the load_model_id is ignored and loaded from the task object
regardless of the code
:param task: Task object
"""
self._set_task(task)
if running_remotely() and task.input_model and task.is_main_task():
self._base_model = task.input_model
self._base_model_id = task.input_model.id
else:
# we should set the task input model to point to us
model = self._get_base_model()
# try to store the input model id, if it is not empty
if model.id != self._EMPTY_MODEL_ID:
task.set_input_model(model_id=model.id)
# only copy the model design if the task has no design to begin with
if not self._task.get_model_config_text():
task.set_model_config(config_text=model.model_design)
if not self._task.get_labels_enumeration():
task.set_model_label_enumeration(model.data.labels)
# If there was an output model connected, it may need to be updated by
# the newly connected input model
self.task._reconnect_output_model()
def _get_base_model(self):
if self._base_model:
return self._base_model
if not self._base_model_id:
# this shouldn't actually happen
raise Exception('Missing model ID, cannot create an empty model')
self._base_model = _Model(
upload_storage_uri=None,
cache_dir=get_cache_dir(),
model_id=self._base_model_id,
)
return self._base_model
def _get_model_data(self):
return self._get_base_model().data
class OutputModel(BaseModel):
"""
Create an output model for a task to store the training results in.
By definition the Model is always connected to a task, and is automatically registered as its output model.
The common use case is reusing the model object, and overriding the weights every stored snapshot.
A user can create multiple output models for a task, think a snapshot after a validation test has a new high-score.
The Model will be read-write and if config/label-enumeration are None,
their values will be initialized from the task input model.
"""
@property
def published(self):
if not self.id:
return False
return self._get_base_model().locked
@property
def config_text(self):
"""
returns a string representing the model configuration (from prototxt to ini file or python code to evaluate)
:return: string
"""
return _Model._unwrap_design(self._get_model_data().design)
@config_text.setter
def config_text(self, value):
"""
Update the model configuration, store a blob of text for custom usage
"""
self.update_design(config_text=value)
@property
def config_dict(self):
"""
returns a configuration dictionary parsed from the config_text text,
usually representing the model configuration (from prototxt to ini file or python code to evaluate)
:return: Dictionary
"""
return self._text_to_config_dict(self.config_text)
@config_dict.setter
def config_dict(self, value):
"""
Update the model configuration: model configuration parameters (dict).
"""
self.update_design(config_dict=value)
@property
def labels(self):
"""
Return the labels enumerator {str(label): integer(id)} as saved in the model object
:return: labels_dict, dictionary with labels (text) keys and values as integers
"""
return self._get_model_data().labels
@labels.setter
def labels(self, value):
"""
update the labels enumerator {str(label): integer(id)} as saved in the model object
"""
self.update_labels(labels=value)
@property
def upload_storage_uri(self):
return self._get_base_model().upload_storage_uri
def __init__(
self,
task,
config_text=None,
config_dict=None,
label_enumeration=None,
name=None,
tags=None,
comment=None,
framework=None,
):
"""
Create a new model and immediately connect it to a task.
We do not allow for Model creation without a task, so we always keep track on how we created the models
In remote execution, Model parameters can be overridden by the Task (such as model configuration & label enumerator)
:param task: Task object
:type task: Task
:param config_text: model configuration (unconstrained text string). usually the content of a config_dict file.
If `config_text` is not None, `config_dict` must not be provided.
:param config_dict: model configuration parameters (dict).
If `config_dict` is not None, `config_text` must not be provided.
:param label_enumeration: dictionary of string to integer, enumerating the model output to labels
example: {'background': 0 , 'person': 1}
:type label_enumeration: dict[str: int] or None
:param name: optional, name for the newly created model
:param tags: optional, list of strings as tags
:param comment: optional, string description for the model
:param framework: optional, string name of the framework of the model or Framework
"""
super(OutputModel, self).__init__(task=task)
config_text = self._resolve_config(config_text=config_text, config_dict=config_dict)
self._model_local_filename = None
self._base_model = None
self._floating_data = _DummyModel(
design=_Model._wrap_design(config_text),
labels=label_enumeration or task.get_labels_enumeration(),
name=name,
tags=tags,
comment='Created by task id: {}'.format(task.id) + ('\n' + comment if comment else ''),
framework=framework,
upload_storage_uri=task.output_uri,
)
self.connect(task)
def connect(self, task):
"""
Connect current model with a specific task, only supported for preexisting models,
i.e. not supported on objects created with create_and_connect()
When running in debug mode (i.e. locally), the task is updated with the model object
(i.e. task input model is the load_model_id)
When running remotely (i.e. from a daemon) the model is being updated from the task
Notice! when running remotely the load_model_id is ignored and loaded from the task object
regardless of the code
:param task: Task object
"""
if self._task != task:
raise ValueError('Can only connect preexisting model to task, but this is a fresh model')
if running_remotely() and task.is_main_task():
self._floating_data.design = _Model._wrap_design(self._task.get_model_config_text())
self._floating_data.labels = self._task.get_labels_enumeration()
elif self._floating_data is not None:
# we copy configuration / labels if they exist, obviously someone wants them as the output base model
if _Model._unwrap_design(self._floating_data.design):
task.set_model_config(config_text=self._floating_data.design)
else:
self._floating_data.design = _Model._wrap_design(self._task.get_model_config_text())
if self._floating_data.labels:
task.set_model_label_enumeration(self._floating_data.labels)
else:
self._floating_data.labels = self._task.get_labels_enumeration()
self.task._save_output_model(self)
def set_upload_destination(self, uri):
"""
Set the uri to upload all the model weight files to.
Files are uploaded separately to the destination storage (e.g. s3,gc,file) and then
a link to the uploaded model is stored in the model object
Notice: credentials for the upload destination will be pooled from the
global configuration file (i.e. ~/trains.conf)
:param uri: upload destination (string). example: 's3://bucket/directory/' or 'file:///tmp/debug/'
:return: True if destination scheme is supported (i.e. s3:// file:// gc:// etc...)
"""
if not uri:
return
# Test if we can update the model.
self._validate_update()
# Create the storage helper
storage = StorageHelper.get(uri)
# Verify that we can upload to this destination
try:
uri = storage.verify_upload(folder_uri=uri)
except Exception:
raise ValueError("Could not set destination uri to: %s [Check write permissions]" % uri)
# store default uri
self._get_base_model().upload_storage_uri = uri
def update_weights(self, weights_filename=None, upload_uri=None, target_filename=None,
auto_delete_file=True, register_uri=None, iteration=None, update_comment=True):
"""
Update the model weights from a locally stored model filename.
Uploading the model is a background process, the call returns immediately.
:param weights_filename: locally stored filename to be uploaded as is
:param upload_uri: destination uri for model weights upload (default: previously used uri)
:param target_filename: the newly created filename in the destination uri location (default: weights_filename)
:param auto_delete_file: delete temporary file after uploading
:param register_uri: register an already uploaded weights file (uri must be valid)
:param update_comment: if True, model comment will be updated with local weights file location (provenance)
:return: uploaded uri
"""
def delete_previous_weights_file(filename=weights_filename):
try:
if filename:
os.remove(filename)
except OSError:
self._log.debug('Failed removing temporary file %s' % filename)
# test if we can update the model
if self.id and self.published:
raise ValueError('Model is published and cannot be changed')
if (not weights_filename and not register_uri) or (weights_filename and register_uri):
raise ValueError('Model update must have either local weights file to upload, '
'or pre-uploaded register_uri, never both')
# only upload if we are connected to a task
if not self._task:
raise Exception('Missing a task for this model')
if weights_filename is not None:
# make sure we delete the previous file, if it exists
if self._model_local_filename != weights_filename:
delete_previous_weights_file(self._model_local_filename)
# store temp filename for deletion next time, if needed
if auto_delete_file:
self._model_local_filename = weights_filename
# make sure the created model is updated:
model = self._get_force_base_model()
if not model:
raise ValueError('Failed creating internal output model')
# select the correct file extension based on the framework, or update the framework based on the file extension
framework, file_ext = Framework._get_file_ext(
framework=self._get_model_data().framework,
filename=weights_filename or register_uri
)
if weights_filename:
target_filename = target_filename or Path(weights_filename).name
if not target_filename.lower().endswith(file_ext):
target_filename += file_ext
# set target uri for upload (if specified)
if upload_uri:
self.set_upload_destination(upload_uri)
# let us know the iteration number, we put it in the comment section for now.
if update_comment:
comment = self.comment or ''
iteration_msg = 'snapshot {} stored'.format(weights_filename or register_uri)
if not comment.startswith('\n'):
comment = '\n' + comment
comment = iteration_msg + comment
else:
comment = None
# if we have no output destination, just register the local model file
if weights_filename and not self.upload_storage_uri and not self._task.storage_uri:
register_uri = weights_filename
weights_filename = None
auto_delete_file = False
self._log.info('No output storage destination defined, registering local model %s' % register_uri)
# start the upload
if weights_filename:
if not model.upload_storage_uri:
self.set_upload_destination(self.upload_storage_uri or self._task.storage_uri)
output_uri = model.update_and_upload(
model_file=weights_filename,
task_id=self._task.id,
async_enable=True,
target_filename=target_filename,
framework=self.framework or framework,
comment=comment,
cb=delete_previous_weights_file if auto_delete_file else None,
iteration=iteration or self._task.data.last_iteration,
)
elif register_uri:
register_uri = StorageHelper.conform_url(register_uri)
output_uri = model.update(uri=register_uri, task_id=self._task.id, framework=framework, comment=comment)
else:
output_uri = None
# make sure that if we are in dev move we report that we are training (not debugging)
self._task._output_model_updated()
return output_uri
def update_weights_package(self, weights_filenames=None, weights_path=None, upload_uri=None,
target_filename=None, auto_delete_file=True, iteration=None):
"""
Update the model weights from a locally stored model files (or directory containing multiple files).
Uploading the model is a background process, the call returns immediately.
:param weights_filenames: list of locally stored filenames (list of strings)
:type weights_filenames: list
:param weights_path: directory path to package (all the files in the directory will be uploaded)
:type weights_path: str
:param upload_uri: destination uri for model weights upload (default: previously used uri)
:param target_filename: the newly created filename in the destination uri location (default: weights_filename)
:param auto_delete_file: delete temporary file after uploading
:return: uploaded uri for the weights package
"""
# create list of files
if (not weights_filenames and not weights_path) or (weights_filenames and weights_path):
raise ValueError('Model update weights package should get either directory path to pack or a list of files')
if not weights_filenames:
weights_filenames = list(map(six.text_type, Path(weights_path).glob('*')))
# create packed model from all the files
fd, zip_file = mkstemp(prefix='model_package.', suffix='.zip')
try:
with zipfile.ZipFile(zip_file, 'w', allowZip64=True, compression=zipfile.ZIP_STORED) as zf:
for filename in weights_filenames:
zf.write(filename, arcname=Path(filename).name)
finally:
os.close(fd)
# now we can delete the files (or path if provided)
if auto_delete_file:
def safe_remove(path, is_dir=False):
try:
(os.rmdir if is_dir else os.remove)(path)
except OSError:
self._log.info('Failed removing temporary {}'.format(path))
for filename in weights_filenames:
safe_remove(filename)
if weights_path:
safe_remove(weights_path, is_dir=True)
if target_filename and not target_filename.lower().endswith('.zip'):
target_filename += '.zip'
# and now we should upload the file, always delete the temporary zip file
comment = self.comment or ''
iteration_msg = 'snapshot {} stored'.format(str(weights_filenames))
if not comment.startswith('\n'):
comment = '\n' + comment
comment = iteration_msg + comment
self.comment = comment
uploaded_uri = self.update_weights(weights_filename=zip_file, auto_delete_file=True, upload_uri=upload_uri,
target_filename=target_filename or 'model_package.zip',
iteration=iteration, update_comment=False)
# set the model tag (by now we should have a model object) so we know we have packaged file
self._set_package_tag()
return uploaded_uri
def update_design(self, config_text=None, config_dict=None):
"""
Update the model configuration, basically store a blob of text for custom usage
Notice: this is done in a lazily, only when updating weights we force the update of configuration in the backend
:param config_text: model configuration (unconstrained text string). usually the content of a config_dict file.
If `config_text` is not None, `config_dict` must not be provided.
:param config_dict: model configuration parameters (dict).
If `config_dict` is not None, `config_text` must not be provided.
:return: True if update was successful
"""
if not self._validate_update():
return
config_text = self._resolve_config(config_text=config_text, config_dict=config_dict)
if self._task:
self._task.set_model_config(config_text=config_text)
if self.id:
# update the model object (this will happen if we resumed a training task)
result = self._get_force_base_model().update(design=config_text, task_id=self._task.id)
else:
self._floating_data.design = _Model._wrap_design(config_text)
result = Waitable()
# you can wait on this object
return result
def update_labels(self, labels):
"""
Update the model label enumeration {str(label): integer(id)}
:param labels: dictionary with labels (text) keys and values as integers
example: {'background': 0 , 'person': 1}
:return:
"""
validate_dict(labels, key_types=six.string_types, value_types=six.integer_types, desc='label enumeration')
if not self._validate_update():
return
if self._task:
self._task.set_model_label_enumeration(labels)
if self.id:
# update the model object (this will happen if we resumed a training task)
result = self._get_force_base_model().update(labels=labels, task_id=self._task.id)
else:
self._floating_data.labels = labels
result = Waitable()
# you can wait on this object
return result
@classmethod
def wait_for_uploads(cls, timeout=None, max_num_uploads=None):
"""
Wait for any pending/in-progress model uploads. If no uploads are pending or in-progress, returns immediately.
:param timeout: If not None, a floating point number specifying a timeout in seconds after which this call will
return.
:param max_num_uploads: Max number of uploads to wait for.
"""
_Model.wait_for_results(timeout=timeout, max_num_uploads=max_num_uploads)
def _get_force_base_model(self):
if self._base_model:
return self._base_model
# create a new model from the task
self._base_model = self._task.create_output_model()
# update the model from the task inputs
labels = self._task.get_labels_enumeration()
config_text = self._task.get_model_config_text()
parent = self._task.output_model_id or self._task.input_model_id
self._base_model.update(
labels=labels,
design=config_text,
task_id=self._task.id,
project_id=self._task.project,
parent_id=parent,
name=self._floating_data.name or self._task.name,
comment=self._floating_data.comment,
tags=self._floating_data.tags,
framework=self._floating_data.framework,
upload_storage_uri=self._floating_data.upload_storage_uri
)
# remove model floating change set, by now they should have matched the task.
self._floating_data = None
# now we have to update the creator task so it points to us
self._base_model.update_for_task(task_id=self._task.id, override_model_id=self.id)
return self._base_model
def _get_base_model(self):
if self._floating_data:
return self._floating_data
return self._get_force_base_model()
def _get_model_data(self):
if self._base_model:
return self._base_model.data
return self._floating_data
def _validate_update(self):
# test if we can update the model
if self.id and self.published:
raise ValueError('Model is published and cannot be changed')
return True
class Waitable(object):
def wait(self, *_, **__):
return True