clearml/examples/pipeline/pipeline_from_tasks.py
2021-09-05 00:30:53 +03:00

50 lines
1.9 KiB
Python

from clearml import Task
from clearml.automation import PipelineController
def pre_execute_callback_example(a_pipeline, a_node, current_param_override):
# type (PipelineController, PipelineController.Node, dict) -> bool
print('Cloning Task id={} with parameters: {}'.format(a_node.base_task_id, current_param_override))
# if we want to skip this node (and subtree of this node) we return False
# return True to continue DAG execution
return True
def post_execute_callback_example(a_pipeline, a_node):
# type (PipelineController, PipelineController.Node) -> None
print('Completed Task id={}'.format(a_node.executed))
# if we need the actual executed Task: Task.get_task(task_id=a_node.executed)
return
# Connecting ClearML with the current pipeline,
# from here on everything is logged automatically
pipe = PipelineController(
name='pipeline demo',
project='examples',
version='0.0.1',
add_pipeline_tags=False,
)
pipe.set_default_execution_queue('default')
pipe.add_step(name='stage_data', base_task_project='examples', base_task_name='pipeline step 1 dataset artifact')
pipe.add_step(name='stage_process', parents=['stage_data', ],
base_task_project='examples', base_task_name='pipeline step 2 process dataset',
parameter_override={'General/dataset_url': '${stage_data.artifacts.dataset.url}',
'General/test_size': 0.25},
pre_execute_callback=pre_execute_callback_example,
post_execute_callback=post_execute_callback_example
)
pipe.add_step(name='stage_train', parents=['stage_process', ],
base_task_project='examples', base_task_name='pipeline step 3 train model',
parameter_override={'General/dataset_task_id': '${stage_process.id}'})
# for debugging purposes use local jobs
# pipe.start_locally()
# Starting the pipeline (in the background)
pipe.start()
print('done')