mirror of
https://github.com/clearml/clearml
synced 2025-01-31 17:17:00 +00:00
62 lines
2.2 KiB
Python
62 lines
2.2 KiB
Python
from random import sample
|
|
|
|
from trains import Task
|
|
|
|
# Connecting TRAINS
|
|
task = Task.init(project_name='examples', task_name='Random Hyper-Parameter Search Example', task_type=Task.TaskTypes.optimizer)
|
|
|
|
# Create a hyper-parameter dictionary for the task
|
|
params = dict()
|
|
|
|
# track my parameters dictionary
|
|
params = task.connect(params)
|
|
|
|
# define random search space,
|
|
params['batch_size'] = [64, 96, 128, 160, 192]
|
|
params['layer_1'] = [128, 512, 32]
|
|
params['layer_2'] = [128, 512, 32]
|
|
|
|
# This is a simple random search
|
|
# (can be integrated with 'bayesian-optimization' 'hpbandster' etc.)
|
|
space = {
|
|
'batch_size': lambda: sample(params['batch_size'], 1)[0],
|
|
'layer_1': lambda: sample(range(*params['layer_1']), 1)[0],
|
|
'layer_2': lambda: sample(range(*params['layer_2']), 1)[0],
|
|
}
|
|
|
|
# number of random samples to test from 'space'
|
|
params['total_number_of_experiments'] = 3
|
|
|
|
# execution queue to add experiments to
|
|
params['execution_queue_name'] = 'default'
|
|
|
|
# experiment template to optimize with random parameter search
|
|
params['experiment_template_name'] = 'Keras HP optimization base'
|
|
|
|
# Select base template task
|
|
# Notice we can be more imaginative and use task_id which will eliminate the need to use project name
|
|
template_task = Task.get_task(project_name='examples', task_name=params['experiment_template_name'])
|
|
|
|
for i in range(params['total_number_of_experiments']):
|
|
# clone the template task into a new write enabled task (where we can change parameters)
|
|
cloned_task = Task.clone(source_task=template_task,
|
|
name=template_task.name+' {}'.format(i), parent=template_task.id)
|
|
|
|
# get the original template parameters
|
|
cloned_task_parameters = cloned_task.get_parameters()
|
|
|
|
# override with random samples form grid
|
|
for k in space.keys():
|
|
cloned_task_parameters[k] = space[k]()
|
|
|
|
# put back into the new cloned task
|
|
cloned_task.set_parameters(cloned_task_parameters)
|
|
print('Experiment {} set with parameters {}'.format(i, cloned_task_parameters))
|
|
|
|
# enqueue the task for execution
|
|
Task.enqueue(cloned_task.id, queue_name=params['execution_queue_name'])
|
|
print('Experiment id={} enqueue for execution'.format(cloned_task.id))
|
|
|
|
# we are done, the next step is to watch the experiments graphs
|
|
print('Done')
|