mirror of
https://github.com/clearml/clearml
synced 2025-01-31 17:17:00 +00:00
77 lines
3.2 KiB
Python
77 lines
3.2 KiB
Python
# ClearML - Example of tensorboard with tensorflow (without any actual training)
|
|
#
|
|
import os
|
|
import tensorflow as tf
|
|
import numpy as np
|
|
from tempfile import gettempdir
|
|
from PIL import Image
|
|
|
|
from clearml import Task
|
|
|
|
|
|
def generate_summary(k, step):
|
|
# Make a normal distribution, with a shifting mean
|
|
mean_moving_normal = tf.random.normal(shape=[1000], mean=(5 * k), stddev=1)
|
|
# Record that distribution into a histogram summary
|
|
tf.summary.histogram("normal/moving_mean", mean_moving_normal, step=step)
|
|
tf.summary.scalar("normal/value", mean_moving_normal[-1], step=step)
|
|
|
|
# Make a normal distribution with shrinking variance
|
|
variance_shrinking_normal = tf.random.normal(shape=[1000], mean=0, stddev=1-k)
|
|
# Record that distribution too
|
|
tf.summary.histogram("normal/shrinking_variance", variance_shrinking_normal, step=step)
|
|
tf.summary.scalar("normal/variance_shrinking_normal", variance_shrinking_normal[-1], step=step)
|
|
|
|
# Let's combine both of those distributions into one dataset
|
|
normal_combined = tf.concat([mean_moving_normal, variance_shrinking_normal], 0)
|
|
# We add another histogram summary to record the combined distribution
|
|
tf.summary.histogram("normal/bimodal", normal_combined, step=step)
|
|
tf.summary.scalar("normal/normal_combined", normal_combined[0], step=step)
|
|
|
|
# Add a gamma distribution
|
|
gamma = tf.random.gamma(shape=[1000], alpha=k)
|
|
tf.summary.histogram("gamma", gamma, step=step)
|
|
|
|
# And a poisson distribution
|
|
poisson = tf.random.poisson(shape=[1000], lam=k)
|
|
tf.summary.histogram("poisson", poisson, step=step)
|
|
|
|
# And a uniform distribution
|
|
uniform = tf.random.uniform(shape=[1000], maxval=k*10)
|
|
tf.summary.histogram("uniform", uniform, step=step)
|
|
|
|
# Finally, combine everything together!
|
|
all_distributions = [mean_moving_normal, variance_shrinking_normal, gamma, poisson, uniform]
|
|
all_combined = tf.concat(all_distributions, 0)
|
|
tf.summary.histogram("all_combined", all_combined, step=step)
|
|
|
|
# Log text value
|
|
tf.summary.text("this is a test", "This is the content", step=step)
|
|
|
|
# convert to 4d [batch, col, row, RGB-channels]
|
|
image_open = Image.open(os.path.join('..', '..', 'reporting', 'data_samples', 'picasso.jpg'))
|
|
image = np.asarray(image_open)
|
|
image_gray = image[:, :, 0][np.newaxis, :, :, np.newaxis]
|
|
image_rgba = np.concatenate((image, 255*np.atleast_3d(np.ones(shape=image.shape[:2], dtype=np.uint8))), axis=2)
|
|
image_rgba = image_rgba[np.newaxis, :, :, :]
|
|
image = image[np.newaxis, :, :, :]
|
|
|
|
tf.summary.image("test", image, max_outputs=10, step=step)
|
|
tf.summary.image("test_gray", image_gray, max_outputs=10, step=step)
|
|
tf.summary.image("test_rgba", image_rgba, max_outputs=10, step=step)
|
|
|
|
|
|
task = Task.init(project_name='examples', task_name='TensorbBoard toy example')
|
|
|
|
# create the tensorboard file writer in a temp folder
|
|
writer = tf.summary.create_file_writer(os.path.join(gettempdir(), "toy_tb_example"))
|
|
|
|
# Setup a loop and write the summaries to disk
|
|
N = 40
|
|
for step in range(N):
|
|
k_val = step/float(N)
|
|
with writer.as_default():
|
|
generate_summary(k_val, tf.cast(step, tf.int64))
|
|
|
|
print('Tensorboard toy example done')
|