mirror of
https://github.com/clearml/clearml
synced 2025-01-31 09:07:00 +00:00
247 lines
6.0 KiB
Plaintext
247 lines
6.0 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"colab_type": "text",
|
|
"id": "NKas2cYws8F6"
|
|
},
|
|
"source": [
|
|
"# Allegro ClearML matplotlib example\n",
|
|
"\n",
|
|
"[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/allegroai/clearml/blob/master/examples/frameworks/matplotlib/jupyter_matplotlib_example.ipynb)\n",
|
|
"\n",
|
|
"This example introduces ClearML with matplotlib functionality. It also shows seaborn functionality. You can find more frameworks examples [here](https://github.com/allegroai/clearml/tree/master/examples/frameworks).\n",
|
|
"\n",
|
|
"Note: This example is based on the ClearML [matplotlib_example.py](https://github.com/allegroai/clearml/blob/master/examples/frameworks/matplotlib/matplotlib_example.py) example."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"colab": {},
|
|
"colab_type": "code",
|
|
"id": "72lCj7MJmRkQ"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# If you don't have ClearML installed then uncomment this line\n",
|
|
"# !pip install clearml"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"!pip install seaborn"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"colab_type": "text",
|
|
"id": "b8jtq0iSt3-U"
|
|
},
|
|
"source": [
|
|
"## Create a new task.\n",
|
|
"\n",
|
|
"To create a new Task object, call the `Task.init` method providing it with `project_name` (the project name for the experiment) and `task_name` (the name of the experiment). When `Task.init` executes, a link to the Web UI Results page for the newly generated Task will be printed, and the Task will be updated in real time in the ClearML demo server.\n",
|
|
"\n",
|
|
"You can read about the `Task` class in the docs [here](https://clear.ml/docs/latest/docs/fundamentals/task)."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"colab": {},
|
|
"colab_type": "code",
|
|
"id": "ses67ulJkGPq"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"import matplotlib.pyplot as plt\n",
|
|
"import numpy as np\n",
|
|
"import seaborn as sns\n",
|
|
"\n",
|
|
"from clearml import Task\n",
|
|
"\n",
|
|
"# Start a new task\n",
|
|
"task = Task.init(project_name=\"Colab notebooks\", task_name=\"Matplotlib example\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"colab_type": "text",
|
|
"id": "T2l-0WvJt_yo"
|
|
},
|
|
"source": [
|
|
"## Matplotlib support\n",
|
|
"\n",
|
|
"ClearML automatically logs Matplotlib plots. They appear in the Web UI Results tab.\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"colab": {},
|
|
"colab_type": "code",
|
|
"id": "a-nOyg9xlxiR"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# create plot\n",
|
|
"N = 50\n",
|
|
"x = np.random.rand(N)\n",
|
|
"y = np.random.rand(N)\n",
|
|
"colors = np.random.rand(N)\n",
|
|
"area = (30 * np.random.rand(N))**2 # 0 to 15 point radii\n",
|
|
"plt.scatter(x, y, s=area, c=colors, alpha=0.5)\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"colab": {},
|
|
"colab_type": "code",
|
|
"id": "iV4BtqRFmi0N"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# create another plot - with a name\n",
|
|
"x = np.linspace(0, 10, 30)\n",
|
|
"y = np.sin(x)\n",
|
|
"plt.plot(x, y, 'o', color='black')\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"colab_type": "text",
|
|
"id": "yKT5UjDk6DGB"
|
|
},
|
|
"source": [
|
|
"By calling the `imshow` method, ClearML automatically reports plot images in Results tab."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"colab": {},
|
|
"colab_type": "code",
|
|
"id": "IVzUScalmio-"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# create unitlted image plot\n",
|
|
"m = np.eye(256, 256, dtype=np.uint8)\n",
|
|
"plt.imshow(m)\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"colab": {},
|
|
"colab_type": "code",
|
|
"id": "mioKlXpimib1"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# create image plot - with a name\n",
|
|
"m = np.eye(256, 256, dtype=np.uint8)\n",
|
|
"plt.imshow(m)\n",
|
|
"plt.title('Image Title')\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"colab": {},
|
|
"colab_type": "code",
|
|
"id": "AE7Gbm3GfvvK"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# create plot with savefig\n",
|
|
"N = 10\n",
|
|
"x = np.random.rand(N)\n",
|
|
"y = np.random.rand(N)\n",
|
|
"colors = np.random.rand(N)\n",
|
|
"area = (30 * np.random.rand(N))**2\n",
|
|
"plt.title('savefig Image')\n",
|
|
"plt.scatter(x, y, s=area, c=colors, alpha=0.5)\n",
|
|
"plt.savefig(\"plot.png\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"colab_type": "text",
|
|
"id": "jcRWq9Xc56fX"
|
|
},
|
|
"source": [
|
|
"## Seaborn support"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"colab": {},
|
|
"colab_type": "code",
|
|
"id": "j-usk2d_mqS4"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"sns.set(style=\"darkgrid\")\n",
|
|
"# Load an example dataset with long-form data\n",
|
|
"fmri = sns.load_dataset(\"fmri\")\n",
|
|
"# Plot the responses for different events and regions\n",
|
|
"sns.lineplot(x=\"timepoint\", y=\"signal\",\n",
|
|
" hue=\"region\", style=\"event\",\n",
|
|
" data=fmri)\n",
|
|
"plt.show()"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"colab": {
|
|
"collapsed_sections": [],
|
|
"name": "Allegro ClearML matplotlib example.ipynb",
|
|
"provenance": []
|
|
},
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.6.5"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 1
|
|
}
|