clearml/clearml/task.py

5224 lines
243 KiB
Python

import copy
import json
import os
import shutil
import sys
import threading
import time
import warnings
from argparse import ArgumentParser
from logging import getLogger
from tempfile import mkstemp, mkdtemp
from zipfile import ZipFile, ZIP_DEFLATED
try:
# noinspection PyCompatibility
from collections.abc import Sequence as CollectionsSequence
except ImportError:
from collections import Sequence as CollectionsSequence # noqa
from typing import (
Optional,
Union,
Mapping,
Sequence,
Any,
Dict,
Iterable,
TYPE_CHECKING,
Callable,
Tuple,
List,
TypeVar,
)
import psutil
import six
from pathlib2 import Path
from .backend_config.defs import get_active_config_file, get_config_file
from .backend_api.services import tasks, projects, events, queues
from .backend_api.session.session import (
Session, ENV_ACCESS_KEY, ENV_SECRET_KEY, ENV_HOST, ENV_WEB_HOST, ENV_FILES_HOST, )
from .backend_api.session.defs import (ENV_DEFERRED_TASK_INIT, ENV_IGNORE_MISSING_CONFIG,
ENV_OFFLINE_MODE, MissingConfigError)
from .backend_interface.metrics import Metrics
from .backend_interface.model import Model as BackendModel
from .backend_interface.base import InterfaceBase
from .backend_interface.task import Task as _Task
from .backend_interface.task.log import TaskHandler
from .backend_interface.task.development.worker import DevWorker
from .backend_interface.task.repo import ScriptInfo
from .backend_interface.task.models import TaskModels
from .backend_interface.util import (
get_single_result,
exact_match_regex,
make_message,
mutually_exclusive,
get_queue_id,
get_num_enqueued_tasks,
get_or_create_project,
)
from .binding.absl_bind import PatchAbsl
from .binding.artifacts import Artifacts, Artifact
from .binding.environ_bind import EnvironmentBind, PatchOsFork
from .binding.frameworks.fastai_bind import PatchFastai
from .binding.frameworks.lightgbm_bind import PatchLIGHTgbmModelIO
from .binding.frameworks.pytorch_bind import PatchPyTorchModelIO
from .binding.frameworks.tensorflow_bind import TensorflowBinding
from .binding.frameworks.xgboost_bind import PatchXGBoostModelIO
from .binding.frameworks.catboost_bind import PatchCatBoostModelIO
from .binding.frameworks.megengine_bind import PatchMegEngineModelIO
from .binding.joblib_bind import PatchedJoblib
from .binding.matplotlib_bind import PatchedMatplotlib
from .binding.hydra_bind import PatchHydra
from .binding.click_bind import PatchClick
from .binding.fire_bind import PatchFire
from .binding.jsonargs_bind import PatchJsonArgParse
from .binding.gradio_bind import PatchGradio
from .binding.frameworks import WeightsFileHandler
from .config import (
config, DEV_TASK_NO_REUSE, get_is_master_node, DEBUG_SIMULATE_REMOTE_TASK, DEV_DEFAULT_OUTPUT_URI,
deferred_config, TASK_SET_ITERATION_OFFSET, HOST_MACHINE_IP)
from .config import running_remotely, get_remote_task_id
from .config.cache import SessionCache
from .debugging.log import LoggerRoot
from .errors import UsageError
from .logger import Logger
from .model import Model, InputModel, OutputModel, Framework
from .task_parameters import TaskParameters
from .utilities.config import verify_basic_value
from .binding.args import (
argparser_parseargs_called, get_argparser_last_args,
argparser_update_currenttask, )
from .utilities.dicts import ReadOnlyDict, merge_dicts, RequirementsDict
from .utilities.proxy_object import (
ProxyDictPreWrite, ProxyDictPostWrite, flatten_dictionary,
nested_from_flat_dictionary, naive_nested_from_flat_dictionary, StubObject as _TaskStub)
from .utilities.resource_monitor import ResourceMonitor
from .utilities.seed import make_deterministic
from .utilities.lowlevel.threads import get_current_thread_id
from .utilities.lowlevel.distributed import get_torch_local_rank, get_torch_distributed_anchor_task_id, \
create_torch_distributed_anchor
from .utilities.process.mp import BackgroundMonitor, leave_process
from .utilities.process.exit_hooks import ExitHooks
from .utilities.matching import matches_any_wildcard
from .utilities.parallel import FutureTaskCaller
from .utilities.networking import get_private_ip
# noinspection PyProtectedMember
from .backend_interface.task.args import _Arguments
if TYPE_CHECKING:
import pandas
import numpy
from PIL import Image
from .router.router import HttpRouter # noqa: F401
# Forward declaration to help linters
TaskInstance = TypeVar("TaskInstance", bound="Task")
class Task(_Task):
"""
The ``Task`` class is a code template for a Task object which, together with its connected experiment components,
represents the current running experiment. These connected components include hyperparameters, loggers,
configuration, label enumeration, models, and other artifacts.
The term "main execution Task" refers to the Task context for current running experiment. Python experiment scripts
can create one, and only one, main execution Task. It is traceable, and after a script runs and ClearML stores
the Task in the **ClearML Server** (backend), it is modifiable, reproducible, executable by a worker, and you
can duplicate it for further experimentation.
The ``Task`` class and its methods allow you to create and manage experiments, as well as perform
advanced experimentation functions, such as autoML.
.. warning::
Do not construct Task objects directly. Use one of the methods listed below to create experiments or
reference existing experiments.
Do not define `CLEARML_TASK_*` and `CLEARML_PROC_*` OS environments, they are used internally
for bookkeeping between processes and agents.
For detailed information about creating Task objects, see the following methods:
- Create a new reproducible Task - :meth:`Task.init`
.. important::
In some cases, ``Task.init`` may return a Task object which is already stored in **ClearML Server** (already
initialized), instead of creating a new Task. For a detailed explanation of those cases, see the ``Task.init``
method.
- Manually create a new Task (no auto-logging will apply) - :meth:`Task.create`
- Get the current running Task - :meth:`Task.current_task`
- Get another (different) Task - :meth:`Task.get_task`
.. note::
The **ClearML** documentation often refers to a Task as, "Task (experiment)".
"Task" refers to the class in the ClearML Python Client Package, the object in your Python experiment script,
and the entity with which **ClearML Server** and **ClearML Agent** work.
"Experiment" refers to your deep learning solution, including its connected components, inputs, and outputs,
and is the experiment you can view, analyze, compare, modify, duplicate, and manage using the ClearML
**Web-App** (UI).
Therefore, a "Task" is effectively an "experiment", and "Task (experiment)" encompasses its usage throughout
the ClearML.
The exception to this Task behavior is sub-tasks (non-reproducible Tasks), which do not use the main execution
Task. Creating a sub-task always creates a new Task with a new Task ID.
"""
TaskTypes = _Task.TaskTypes
NotSet = object()
__create_protection = object()
__main_task = None # type: Optional[Task]
__exit_hook = None
__forked_proc_main_pid = None
__task_id_reuse_time_window_in_hours = deferred_config('development.task_reuse_time_window_in_hours', 24.0, float)
__detect_repo_async = deferred_config('development.vcs_repo_detect_async', False)
__default_output_uri = DEV_DEFAULT_OUTPUT_URI.get() or deferred_config('development.default_output_uri', None)
__hidden_tag = "hidden"
_launch_multi_node_section = "launch_multi_node"
_launch_multi_node_instance_tag = "multi_node_instance"
_external_endpoint_port_map = {"http": "_PORT", "tcp": "external_tcp_port"}
_external_endpoint_address_map = {"http": "_ADDRESS", "tcp": "external_address"}
_external_endpoint_service_map = {"http": "EXTERNAL", "tcp": "EXTERNAL_TCP"}
_external_endpoint_internal_port_map = {"http": "_PORT", "tcp": "upstream_task_port"}
_external_endpoint_host_tcp_port_mapping = {"tcp_host_mapping": "_external_host_tcp_port_mapping"}
class _ConnectedParametersType(object):
argparse = "argument_parser"
dictionary = "dictionary"
task_parameters = "task_parameters"
@classmethod
def _options(cls):
return {
var for var, val in vars(cls).items()
if isinstance(val, six.string_types)
}
def __init__(self, private=None, **kwargs):
"""
.. warning::
**Do not construct Task manually!**
Please use :meth:`Task.init` or :meth:`Task.get_task`
"""
if private is not Task.__create_protection:
raise UsageError(
'Task object cannot be instantiated externally, use Task.current_task() or Task.get_task(...)')
self._repo_detect_lock = threading.RLock()
super(Task, self).__init__(**kwargs)
self._arguments = _Arguments(self)
self._logger = None
self._connected_output_model = None
self._dev_worker = None
self._connected_parameter_type = None
self._detect_repo_async_thread = None
self._resource_monitor = None
self._calling_filename = None
self._remote_functions_generated = {}
self._external_endpoint_ports = {}
self._http_router = None
# register atexit, so that we mark the task as stopped
self._at_exit_called = False
@classmethod
def current_task(cls):
# type: () -> TaskInstance
"""
Get the current running Task (experiment). This is the main execution Task (task context) returned as a Task
object.
:return: The current running Task (experiment).
:rtype: Task
"""
# check if we have no main Task, but the main process created one.
if not cls.__main_task and cls.__get_master_id_task_id():
# initialize the Task, connect to stdout
cls.init()
# return main Task
return cls.__main_task
@classmethod
def init(
cls,
project_name=None, # type: Optional[str]
task_name=None, # type: Optional[str]
task_type=TaskTypes.training, # type: Task.TaskTypes
tags=None, # type: Optional[Sequence[str]]
reuse_last_task_id=True, # type: Union[bool, str]
continue_last_task=False, # type: Union[bool, str, int]
output_uri=None, # type: Optional[Union[str, bool]]
auto_connect_arg_parser=True, # type: Union[bool, Mapping[str, bool]]
auto_connect_frameworks=True, # type: Union[bool, Mapping[str, Union[bool, str, list]]]
auto_resource_monitoring=True, # type: Union[bool, Mapping[str, Any]]
auto_connect_streams=True, # type: Union[bool, Mapping[str, bool]]
deferred_init=False, # type: bool
):
# type: (...) -> TaskInstance
"""
Creates a new Task (experiment) if:
- The Task never ran before. No Task with the same ``task_name`` and ``project_name`` is stored in
**ClearML Server**.
- The Task has run before (the same ``task_name`` and ``project_name``), and (a) it stored models and / or
artifacts, or (b) its status is Published , or (c) it is Archived.
- A new Task is forced by calling ``Task.init`` with ``reuse_last_task_id=False``.
Otherwise, the already initialized Task object for the same ``task_name`` and ``project_name`` is returned,
or, when being executed remotely on a clearml-agent, the task returned is the existing task from the backend.
.. note::
To reference another Task, instead of initializing the same Task more than once, call
:meth:`Task.get_task`. For example, to "share" the same experiment in more than one script,
call ``Task.get_task``. See the ``Task.get_task`` method for an example.
For example:
The first time the following code runs, it will create a new Task. The status will be Completed.
.. code-block:: py
from clearml import Task
task = Task.init('myProject', 'myTask')
If this code runs again, it will not create a new Task. It does not store a model or artifact,
it is not Published (its status Completed) , it was not Archived, and a new Task is not forced.
If the Task is Published or Archived, and run again, it will create a new Task with a new Task ID.
The following code will create a new Task every time it runs, because it stores an artifact.
.. code-block:: py
task = Task.init('myProject', 'myOtherTask')
d = {'a': '1'}
task.upload_artifact('myArtifact', d)
:param str project_name: The name of the project in which the experiment will be created. If the project does
not exist, it is created. If ``project_name`` is ``None``, the repository name is used. (Optional)
:param str task_name: The name of Task (experiment). If ``task_name`` is ``None``, the Python experiment
script's file name is used. (Optional)
:param TaskTypes task_type: The task type. Valid task types:
- ``TaskTypes.training`` (default)
- ``TaskTypes.testing``
- ``TaskTypes.inference``
- ``TaskTypes.data_processing``
- ``TaskTypes.application``
- ``TaskTypes.monitor``
- ``TaskTypes.controller``
- ``TaskTypes.optimizer``
- ``TaskTypes.service``
- ``TaskTypes.qc``
- ``TaskTypes.custom``
:param tags: Add a list of tags (str) to the created Task. For example: tags=['512x512', 'yolov3']
:param bool reuse_last_task_id: Force a new Task (experiment) with a previously used Task ID,
and the same project and Task name. If the previously executed Task has artifacts or models, it will not be
reused (overwritten), and a new Task will be created. When a Task is reused, the previous execution outputs
are deleted, including console outputs and logs. The values are:
- ``True`` - Reuse the last Task ID. (default)
- ``False`` - Force a new Task (experiment).
- A string - You can also specify a Task ID (string) to be reused, instead of the cached ID based on the project/name combination.
:param bool continue_last_task: Continue the execution of a previously executed Task (experiment). When
continuing the executing of a previously executed Task,
all previous artifacts / models / logs remain intact.
New logs will continue iteration/step based on the previous-execution maximum iteration value.
For example, The last train/loss scalar reported was iteration 100, the next report will be iteration 101.
The values are:
- ``True`` - Continue the last Task ID. Specified explicitly by reuse_last_task_id or implicitly with the same logic as reuse_last_task_id
- ``False`` - Overwrite the execution of previous Task (default).
- A string - You can also specify a Task ID (string) to be continued. This is equivalent to `continue_last_task=True` and `reuse_last_task_id=a_task_id_string`.
- An integer - Specify initial iteration offset (override the auto automatic last_iteration_offset). Pass 0, to disable the automatic last_iteration_offset or specify a different initial offset. You can specify a Task ID to be used with `reuse_last_task_id='task_id_here'`
:param str output_uri: The default location for output models and other artifacts. If True, the default
files_server will be used for model storage. In the default location, ClearML creates a subfolder for the
output. If set to False, local runs will not upload output models and artifacts,
and remote runs will not use any default values provided using ``default_output_uri``.
The subfolder structure is the following: \\<output destination name\\> / \\<project name\\> / \\<task name\\>.\\<Task ID\\>.
Note that for cloud storage, you must install the **ClearML** package for your cloud storage type,
and then configure your storage credentials. For detailed information, see "Storage" in the ClearML
Documentation.
The following are examples of ``output_uri`` values for the supported locations:
- A shared folder: ``/mnt/share/folder``
- S3: ``s3://bucket/folder``
- Google Cloud Storage: ``gs://bucket-name/folder``
- Azure Storage: ``azure://company.blob.core.windows.net/folder/``
- Default file server: True
:param auto_connect_arg_parser: Automatically connect an argparse object to the Task. Supported argument
parser packages are: argparse, click, python-fire, jsonargparse. The values are:
- ``True`` - Automatically connect. (default)
- ``False`` - Do not automatically connect.
- A dictionary - In addition to a boolean, you can use a dictionary for fined grained control of connected
arguments. The dictionary keys are argparse variable names and the values are booleans.
The ``False`` value excludes the specified argument from the Task's parameter section.
Keys missing from the dictionary default to ``True``, you can change it to be ``False`` by adding
``*`` key as ``False`` to the dictionary.
An empty dictionary defaults to ``False``.
For example:
.. code-block:: py
auto_connect_arg_parser={"do_not_include_me": False, }
.. code-block:: py
auto_connect_arg_parser={"only_include_me": True, "*": False}
.. note::
To manually connect an argparse, use :meth:`Task.connect`.
:param auto_connect_frameworks: Automatically connect frameworks This includes patching MatplotLib, XGBoost,
scikit-learn, Keras callbacks, and TensorBoard/X to serialize plots, graphs, and the model location to
the **ClearML Server** (backend), in addition to original output destination.
The values are:
- ``True`` - Automatically connect (default)
- ``False`` - Do not automatically connect
- A dictionary - In addition to a boolean, you can use a dictionary for fined grained control of connected
frameworks. The dictionary keys are frameworks and the values are booleans, other dictionaries used for
finer control or wildcard strings.
In case of wildcard strings, the local path of a model file has to match at least one wildcard to be
saved/loaded by ClearML. Example: ``{'pytorch' : '*.pt', 'tensorflow': ['*.h5', '*']}``
Keys missing from the dictionary default to ``True``, and an empty dictionary defaults to ``False``.
Supported keys for finer control: ``{'tensorboard': {'report_hparams': bool}}`` # whether to report TensorBoard hyperparameters
For example:
.. code-block:: py
auto_connect_frameworks={
'matplotlib': True, 'tensorflow': ['*.hdf5, 'something_else*], 'tensorboard': True,
'pytorch': ['*.pt'], 'xgboost': True, 'scikit': True, 'fastai': True,
'lightgbm': True, 'hydra': True, 'detect_repository': True, 'tfdefines': True,
'joblib': True, 'megengine': True, 'catboost': True, 'gradio': True
}
.. code-block:: py
auto_connect_frameworks={'tensorboard': {'report_hparams': False}}
:param bool auto_resource_monitoring: Automatically create machine resource monitoring plots
These plots appear in the **ClearML Web-App (UI)**, **RESULTS** tab, **SCALARS** sub-tab,
with a title of **:resource monitor:**.
The values are:
- ``True`` - Automatically create resource monitoring plots. (default)
- ``False`` - Do not automatically create.
- Class Type - Create ResourceMonitor object of the specified class type.
- dict - Dictionary of kwargs to be passed to the ResourceMonitor instance.
The keys can be:
- `report_start_sec` OR `first_report_sec` OR `seconds_from_start` - Maximum number of seconds
to wait for scalar/plot reporting before defaulting
to machine statistics reporting based on seconds from experiment start time
- `wait_for_first_iteration_to_start_sec` - Set the initial time (seconds) to wait for iteration
reporting to be used as x-axis for the resource monitoring,
if timeout exceeds then reverts to `seconds_from_start`
- `max_wait_for_first_iteration_to_start_sec` - Set the maximum time (seconds) to allow the resource
monitoring to revert back to iteration reporting x-axis after starting to report `seconds_from_start`
- `report_mem_used_per_process` OR `report_global_mem_used` - Compatibility feature,
report memory usage for the entire machine
default (false), report only on the running process and its sub-processes
:param auto_connect_streams: Control the automatic logging of stdout and stderr.
The values are:
- ``True`` - Automatically connect (default)
- ``False`` - Do not automatically connect
- A dictionary - In addition to a boolean, you can use a dictionary for fined grained control of stdout and
stderr. The dictionary keys are 'stdout' , 'stderr' and 'logging', the values are booleans.
Keys missing from the dictionary default to ``False``, and an empty dictionary defaults to ``False``.
Notice, the default behaviour is logging stdout/stderr. The `logging` module is logged as a by product
of the stderr logging
For example:
.. code-block:: py
auto_connect_streams={'stdout': True, 'stderr': True, 'logging': False}
:param deferred_init: (default: False) Wait for Task to be fully initialized (regular behaviour).
** BETA feature! use with care **.
If set to True, `Task.init` function returns immediately and all initialization / communication
to the clearml-server is running in a background thread. The returned object is
a full proxy to the regular Task object, hence everything will be working as expected.
Default behaviour can be controlled with: ``CLEARML_DEFERRED_TASK_INIT=1``. Notes:
- Any access to the returned proxy `Task` object will essentially wait for the `Task.init` to be completed.
For example: `print(task.name)` will wait for `Task.init` to complete in the
background and then return the `name` property of the task original object
- Before `Task.init` completes in the background, auto-magic logging (console/metric) might be missed
- If running via an agent, this argument is ignored, and Task init is called synchronously (default)
:return: The main execution Task (Task context)
:rtype: Task
"""
def verify_defaults_match():
validate = [
('project name', project_name, cls.__main_task.get_project_name()),
('task name', task_name, cls.__main_task.name),
('task type', str(task_type) if task_type else task_type, str(cls.__main_task.task_type)),
]
for field, default, current in validate:
if default is not None and default != current:
raise UsageError(
"Current task already created "
"and requested {field} '{default}' does not match current {field} '{current}'. "
"If you wish to create additional tasks use `Task.create`, "
"or close the current task with `task.close()` before calling `Task.init(...)`".format(
field=field,
default=default,
current=current,
)
)
if cls.__main_task is not None and deferred_init != cls.__nested_deferred_init_flag:
# if this is a subprocess, regardless of what the init was called for,
# we have to fix the main task hooks and stdout bindings
if cls.__forked_proc_main_pid != os.getpid() and cls.__is_subprocess():
if task_type is None:
task_type = cls.__main_task.task_type
# make sure we only do it once per process
cls.__forked_proc_main_pid = os.getpid()
# make sure we do not wait for the repo detect thread
cls.__main_task._detect_repo_async_thread = None
cls.__main_task._dev_worker = None
cls.__main_task._resource_monitor = None
# if we are using threads to send the reports,
# after forking there are no threads, so we will need to recreate them
if not getattr(cls, '_report_subprocess_enabled'):
# remove the logger from the previous process
cls.__main_task.get_logger()
# create a new logger (to catch stdout/err)
cls.__main_task._logger = None
cls.__main_task.__reporter = None
# noinspection PyProtectedMember
cls.__main_task._get_logger(auto_connect_streams=auto_connect_streams)
cls.__main_task._artifacts_manager = Artifacts(cls.__main_task)
# unregister signal hooks, they cause subprocess to hang
# noinspection PyProtectedMember
cls.__main_task.__register_at_exit(cls.__main_task._at_exit)
# if we are using threads to send the reports,
# after forking there are no threads, so we will need to recreate them
if not getattr(cls, '_report_subprocess_enabled'):
# start all reporting threads
BackgroundMonitor.start_all(task=cls.__main_task)
if not running_remotely():
verify_defaults_match()
return cls.__main_task
is_sub_process_task_id = None
# check that we are not a child process, in that case do nothing.
# we should not get here unless this is Windows/macOS platform, linux support fork
if cls.__is_subprocess():
is_sub_process_task_id = cls.__get_master_id_task_id()
# we could not find a task ID, revert to old stub behaviour
if not is_sub_process_task_id:
return _TaskStub() # noqa
elif running_remotely() and not get_is_master_node():
# make sure we only do it once per process
cls.__forked_proc_main_pid = os.getpid()
# make sure everyone understands we should act as if we are a subprocess (fake pid 1)
cls.__update_master_pid_task(pid=1, task=get_remote_task_id())
else:
# set us as master process (without task ID)
cls.__update_master_pid_task()
is_sub_process_task_id = None
if task_type is None:
# Backwards compatibility: if called from Task.current_task and task_type
# was not specified, keep legacy default value of TaskTypes.training
task_type = cls.TaskTypes.training
elif isinstance(task_type, six.string_types):
if task_type not in Task.TaskTypes.__members__:
raise ValueError("Task type '{}' not supported, options are: {}".format(
task_type, Task.TaskTypes.__members__.keys()))
task_type = Task.TaskTypes.__members__[str(task_type)]
is_deferred = False
try:
if not running_remotely():
# check remote status
_local_rank = get_torch_local_rank()
if _local_rank is not None and _local_rank > 0:
is_sub_process_task_id = get_torch_distributed_anchor_task_id(timeout=30)
# only allow if running locally and creating the first Task
# otherwise we ignore and perform in order
if ENV_DEFERRED_TASK_INIT.get():
deferred_init = True
if not is_sub_process_task_id and deferred_init and deferred_init != cls.__nested_deferred_init_flag:
def completed_cb(x):
Task.__forked_proc_main_pid = os.getpid()
Task.__main_task = x
getLogger().warning("ClearML initializing Task in the background")
task = FutureTaskCaller(
func=cls.init,
func_cb=completed_cb,
override_cls=cls,
project_name=project_name,
task_name=task_name,
tags=tags,
reuse_last_task_id=reuse_last_task_id,
continue_last_task=continue_last_task,
output_uri=output_uri,
auto_connect_arg_parser=auto_connect_arg_parser,
auto_connect_frameworks=auto_connect_frameworks,
auto_resource_monitoring=auto_resource_monitoring,
auto_connect_streams=auto_connect_streams,
deferred_init=cls.__nested_deferred_init_flag,
)
is_deferred = True
# mark as temp master
cls.__update_master_pid_task()
# if this is the main process, create the task
elif not is_sub_process_task_id:
try:
task = cls._create_dev_task(
default_project_name=project_name,
default_task_name=task_name,
default_task_type=task_type,
tags=tags,
reuse_last_task_id=reuse_last_task_id,
continue_last_task=continue_last_task,
detect_repo=False if (
isinstance(auto_connect_frameworks, dict) and
not auto_connect_frameworks.get('detect_repository', True)) else True,
auto_connect_streams=auto_connect_streams,
)
# check if we are local rank 0 (local master),
# create an anchor with task ID for the other processes
if _local_rank == 0:
create_torch_distributed_anchor(task_id=task.id)
except MissingConfigError as e:
if not ENV_IGNORE_MISSING_CONFIG.get():
raise
getLogger().warning(str(e))
# return a Task-stub instead of the original class
# this will make sure users can still call the Stub without code breaking
return _TaskStub() # noqa
# set defaults
if cls._offline_mode:
task.output_uri = None
# create target data folder for logger / artifacts
# noinspection PyProtectedMember
Path(task._get_default_report_storage_uri()).mkdir(parents=True, exist_ok=True)
elif output_uri is not None:
if output_uri is True:
output_uri = task.get_project_object().default_output_destination or True
task.output_uri = output_uri
elif task.get_project_object().default_output_destination:
task.output_uri = task.get_project_object().default_output_destination
elif cls.__default_output_uri:
task.output_uri = str(cls.__default_output_uri)
# store new task ID
cls.__update_master_pid_task(task=task)
else:
# subprocess should get back the task info
task = cls.get_task(task_id=is_sub_process_task_id)
else:
# if this is the main process, create the task
if not is_sub_process_task_id:
task = cls(
private=cls.__create_protection,
task_id=get_remote_task_id(),
log_to_backend=False,
)
if output_uri is False and not task.output_uri:
# Setting output_uri=False argument will disable using any default when running remotely
pass
else:
if task.get_project_object().default_output_destination and not task.output_uri:
task.output_uri = task.get_project_object().default_output_destination
if cls.__default_output_uri and not task.output_uri:
task.output_uri = cls.__default_output_uri
# store new task ID
cls.__update_master_pid_task(task=task)
# make sure we are started
task.started(ignore_errors=True)
# continue last iteration if we had any (or we need to override it)
if isinstance(continue_last_task, int) and not isinstance(continue_last_task, bool):
task.set_initial_iteration(int(continue_last_task))
elif task.data.last_iteration:
task.set_initial_iteration(int(task.data.last_iteration) + 1)
else:
# subprocess should get back the task info
task = cls.get_task(task_id=is_sub_process_task_id)
except Exception:
raise
else:
Task.__forked_proc_main_pid = os.getpid()
Task.__main_task = task
# register at exist only on the real (none deferred) Task
if not is_deferred:
# register the main task for at exit hooks (there should only be one)
# noinspection PyProtectedMember
task.__register_at_exit(task._at_exit)
# noinspection PyProtectedMember
if cls.__exit_hook:
cls.__exit_hook.register_signal_and_exception_hooks()
# always patch OS forking because of ProcessPool and the alike
PatchOsFork.patch_fork(task)
if auto_connect_frameworks:
def should_connect(*keys):
"""
Evaluates value of auto_connect_frameworks[keys[0]]...[keys[-1]].
If at some point in the evaluation, the value of auto_connect_frameworks[keys[0]]...[keys[-1]]
is a bool, that value will be returned. If a dictionary is empty, it will be evaluated to False.
If a key will not be found in the current dictionary, True will be returned.
"""
should_bind_framework = auto_connect_frameworks
for key in keys:
if not isinstance(should_bind_framework, dict):
return bool(should_bind_framework)
if should_bind_framework == {}:
return False
should_bind_framework = should_bind_framework.get(key, True)
return bool(should_bind_framework)
if not is_deferred and should_connect("hydra"):
PatchHydra.update_current_task(task)
if should_connect("scikit") and should_connect("joblib"):
PatchedJoblib.update_current_task(task)
if should_connect("matplotlib"):
PatchedMatplotlib.update_current_task(task)
if should_connect("tensorflow") or should_connect("tensorboard"):
# allow disabling tfdefines
if not is_deferred and should_connect("tfdefines"):
PatchAbsl.update_current_task(task)
TensorflowBinding.update_current_task(
task,
patch_reporting=should_connect("tensorboard"),
patch_model_io=should_connect("tensorflow"),
report_hparams=should_connect("tensorboard", "report_hparams"),
)
if should_connect("pytorch"):
PatchPyTorchModelIO.update_current_task(task)
if should_connect("megengine"):
PatchMegEngineModelIO.update_current_task(task)
if should_connect("xgboost"):
PatchXGBoostModelIO.update_current_task(task)
if should_connect("catboost"):
PatchCatBoostModelIO.update_current_task(task)
if should_connect("fastai"):
PatchFastai.update_current_task(task)
if should_connect("lightgbm"):
PatchLIGHTgbmModelIO.update_current_task(task)
if should_connect("gradio"):
PatchGradio.update_current_task(task)
cls.__add_model_wildcards(auto_connect_frameworks)
# if we are deferred, stop here (the rest we do in the actual init)
if is_deferred:
from .backend_interface.logger import StdStreamPatch
# patch console outputs, we will keep them in memory until we complete the Task init
# notice we do not load config defaults, as they are not threadsafe
# we might also need to override them with the vault
StdStreamPatch.patch_std_streams(
task.get_logger(),
connect_stdout=(
auto_connect_streams is True) or (
isinstance(auto_connect_streams, dict) and auto_connect_streams.get('stdout', False)
),
connect_stderr=(
auto_connect_streams is True) or (
isinstance(auto_connect_streams, dict) and auto_connect_streams.get('stderr', False)
),
load_config_defaults=False,
)
return task # noqa
if auto_resource_monitoring and not is_sub_process_task_id:
resource_monitor_cls = auto_resource_monitoring \
if isinstance(auto_resource_monitoring, six.class_types) else ResourceMonitor
resource_monitor_kwargs = dict(
report_mem_used_per_process=not config.get("development.worker.report_global_mem_used", False),
first_report_sec=config.get("development.worker.report_start_sec", None),
wait_for_first_iteration_to_start_sec=config.get(
"development.worker.wait_for_first_iteration_to_start_sec", None
),
max_wait_for_first_iteration_to_start_sec=config.get(
"development.worker.max_wait_for_first_iteration_to_start_sec", None
),
)
if isinstance(auto_resource_monitoring, dict):
if "report_start_sec" in auto_resource_monitoring:
auto_resource_monitoring["first_report_sec"] = auto_resource_monitoring.pop("report_start_sec")
if "seconds_from_start" in auto_resource_monitoring:
auto_resource_monitoring["first_report_sec"] = auto_resource_monitoring.pop(
"seconds_from_start"
)
if "report_global_mem_used" in auto_resource_monitoring:
auto_resource_monitoring["report_mem_used_per_process"] = auto_resource_monitoring.pop(
"report_global_mem_used"
)
resource_monitor_kwargs.update(auto_resource_monitoring)
task._resource_monitor = resource_monitor_cls(
task,
**resource_monitor_kwargs
)
task._resource_monitor.start()
# make sure all random generators are initialized with new seed
random_seed = task.get_random_seed()
if random_seed is not None:
make_deterministic(random_seed)
task._set_random_seed_used(random_seed)
if auto_connect_arg_parser:
EnvironmentBind.update_current_task(task)
PatchJsonArgParse.update_current_task(task)
# Patch ArgParser to be aware of the current task
argparser_update_currenttask(task)
PatchClick.patch(task)
PatchFire.patch(task)
# set excluded arguments
if isinstance(auto_connect_arg_parser, dict):
task._arguments.exclude_parser_args(auto_connect_arg_parser)
# Check if parse args already called. If so, sync task parameters with parser
if argparser_parseargs_called():
for parser, parsed_args in get_argparser_last_args():
task._connect_argparse(parser=parser, parsed_args=parsed_args)
PatchHydra.delete_overrides()
elif argparser_parseargs_called():
# actually we have nothing to do, in remote running, the argparser will ignore
# all non argparser parameters, only caveat if parameter connected with the same name
# as the argparser this will be solved once sections are introduced to parameters
pass
# Make sure we start the logger, it will patch the main logging object and pipe all output
# if we are running locally and using development mode worker, we will pipe all stdout to logger.
# The logger will automatically take care of all patching (we just need to make sure to initialize it)
logger = task._get_logger(auto_connect_streams=auto_connect_streams)
# show the debug metrics page in the log, it is very convenient
if not is_sub_process_task_id:
if cls._offline_mode:
logger.report_text('ClearML running in offline mode, session stored in {}'.format(
task.get_offline_mode_folder()))
else:
logger.report_text('ClearML results page: {}'.format(task.get_output_log_web_page()))
# Make sure we start the dev worker if required, otherwise it will only be started when we write
# something to the log.
task._dev_mode_setup_worker()
if (not task._reporter or not task._reporter.is_constructed()) and \
is_sub_process_task_id and not cls._report_subprocess_enabled:
task._setup_reporter()
# start monitoring in background process or background threads
# monitoring are: Resource monitoring and Dev Worker monitoring classes
BackgroundMonitor.start_all(task=task)
# noinspection PyProtectedMember
task._set_startup_info()
return task
def get_http_router(self):
# type: () -> HttpRouter
"""
Retrieve an instance of `HttpRouter` to manage an external HTTP endpoint and intercept traffic.
The `HttpRouter` serves as a traffic manager, enabling the creation and configuration of local and external
routesto redirect, monitor, or manipulate HTTP requests and responses. It is designed to handle routing
needs such via a proxy setup which handles request/response interception and telemetry reporting for
applications that require HTTP endpoint management.
Example usage:
.. code-block:: py
def request_callback(request, persistent_state):
persistent_state["last_request_time"] = time.time()
def response_callback(response, request, persistent_state):
print("Latency:", time.time() - persistent_state["last_request_time"])
if urllib.parse.urlparse(str(request.url).rstrip("/")).path == "/modify":
new_content = response.body.replace(b"modify", b"modified")
headers = copy.deepcopy(response.headers)
headers["Content-Length"] = str(len(new_content))
return Response(status_code=response.status_code, headers=headers, content=new_content)
router = Task.current_task().get_http_router()
router.set_local_proxy_parameters(incoming_port=9000)
router.create_local_route(
source="/",
target="http://localhost:8000",
request_callback=request_callback,
response_callback=response_callback,
endpoint_telemetry={"model": "MyModel"}
)
router.deploy(wait=True)
"""
try:
from .router.router import HttpRouter # noqa
except ImportError:
raise UsageError("Could not import `HttpRouter`. Please run `pip install clearml[router]`")
if self._http_router is None:
self._http_router = HttpRouter(self)
return self._http_router
def request_external_endpoint(
self, port, protocol="http", wait=False, wait_interval_seconds=3.0, wait_timeout_seconds=90.0
):
# type: (int, str, bool, float, float) -> Optional[Dict]
"""
Request an external endpoint for an application
:param port: Port the application is listening to
:param protocol: `http` or `tcp`
:param wait: If True, wait for the endpoint to be assigned
:param wait_interval_seconds: The poll frequency when waiting for the endpoint
:param wait_timeout_seconds: If this timeout is exceeded while waiting for the endpoint,
the method will no longer wait and None will be returned
:return: If wait is False, this method will return None.
If no endpoint could be found while waiting, this method returns None.
Otherwise, it returns a dictionary containing the following values:
- endpoint - raw endpoint. One might need to authenticate in order to use this endpoint
- browser_endpoint - endpoint to be used in browser. Authentication will be handled via the browser
- port - the port exposed by the application
- protocol - the protocol used by the endpoint
"""
Session.verify_feature_set("advanced")
if protocol not in self._external_endpoint_port_map.keys():
raise ValueError("Invalid protocol: {}".format(protocol))
# sync with router - get data from Task
if not self._external_endpoint_ports.get(protocol):
self.reload()
internal_port = self._get_runtime_properties().get(self._external_endpoint_internal_port_map[protocol])
if internal_port:
self._external_endpoint_ports[protocol] = internal_port
# notice this applies for both raw tcp and http, it is so that we can
# detect the host machine exposed ports, and register them on the router
external_host_port_mapping = self._get_runtime_properties().get(
self._external_endpoint_host_tcp_port_mapping["tcp_host_mapping"])
self._external_endpoint_ports["tcp_host_mapping"] = external_host_port_mapping
# check if we need to parse the port mapping, only if running on "bare-metal" host machine.
if self._external_endpoint_ports.get("tcp_host_mapping"):
external_host_port_mapping = self._external_endpoint_ports.get("tcp_host_mapping")
# format is docker standard port mapping format:
# example: "out:in,out_range100-out_range102:in_range0-in_range2"
# notice `out` in this context means the host port, the one that
# the router will route external traffic to
# noinspection PyBroadException
out_port = None
# noinspection PyBroadException
try:
for port_range in external_host_port_mapping.split(","):
out_range, in_range = port_range.split(":", 1)
out_range = out_range.split("-")
in_range = in_range.split("-")
if int(in_range[0]) <= port <= int(in_range[-1]):
# we found a match:
out_port = int(out_range[0]) + (port-int(in_range[0]))
print("INFO: Task.request_external_endpoint(...) changed requested external port to {}, "
"conforming to mapped external host ports [{} -> {}]".format(out_port, port, port_range))
break
if not out_port:
raise ValueError("match not found defaulting to original port")
except Exception:
print("WARNING: Task.request_external_endpoint(...) failed matching requested port to "
"mapped external host port [{} to {}], "
"proceeding with original port {}".format(port, external_host_port_mapping, port))
# change the requested port to the one we have on the machine
if out_port:
port = out_port
# check if we are trying to change the port - currently not allowed
if self._external_endpoint_ports.get(protocol):
if self._external_endpoint_ports.get(protocol) == port:
# we already set this endpoint, but we will set the values again, because maybe IP changed?!
pass
else:
raise ValueError(
"Only one endpoint per protocol can be requested at the moment. "
"Port already exposed is: {}".format(self._external_endpoint_ports.get(protocol))
)
# mark for the router our request
# noinspection PyProtectedMember
self._set_runtime_properties(
{
"_SERVICE": self._external_endpoint_service_map[protocol],
self._external_endpoint_address_map[protocol]: HOST_MACHINE_IP.get() or get_private_ip(),
self._external_endpoint_port_map[protocol]: port,
}
)
# required system_tag for the router to catch the routing request
self.set_system_tags(list(set((self.get_system_tags() or []) + ["external_service"])))
self._external_endpoint_ports[protocol] = port
if wait:
return self.wait_for_external_endpoint(
wait_interval_seconds=wait_interval_seconds,
wait_timeout_seconds=wait_timeout_seconds,
protocol=protocol
)
return None
def wait_for_external_endpoint(self, wait_interval_seconds=3.0, wait_timeout_seconds=90.0, protocol="http"):
# type: (float, float, Optional[str]) -> Union[Optional[Dict], List[Optional[Dict]]]
"""
Wait for an external endpoint to be assigned
:param wait_interval_seconds: The poll frequency when waiting for the endpoint
:param wait_timeout_seconds: If this timeout is exceeded while waiting for the endpoint,
the method will no longer wait
:param protocol: `http` or `tcp`. Wait for an endpoint to be assigned based on the protocol.
If None, wait for all supported protocols
:return: If no endpoint could be found while waiting, this method returns None.
If a protocol has been specified, it returns a dictionary containing the following values:
- endpoint - raw endpoint. One might need to authenticate in order to use this endpoint
- browser_endpoint - endpoint to be used in browser. Authentication will be handled via the browser
- port - the port exposed by the application
- protocol - the protocol used by the endpoint
If not protocol is specified, it returns a list of dictionaries containing the values above,
for each protocol requested and waited
"""
Session.verify_feature_set("advanced")
if protocol:
return self._wait_for_external_endpoint(
wait_interval_seconds=wait_interval_seconds,
wait_timeout_seconds=wait_timeout_seconds,
protocol=protocol,
warn=True
)
results = []
protocols = ["http", "tcp"]
waited_protocols = []
for protocol_ in protocols:
start_time = time.time()
result = self._wait_for_external_endpoint(
wait_interval_seconds=wait_interval_seconds,
wait_timeout_seconds=wait_timeout_seconds,
protocol=protocol_,
warn=False,
)
elapsed = time.time() - start_time
if result:
results.append(result)
wait_timeout_seconds -= elapsed
if wait_timeout_seconds > 0 or result:
waited_protocols.append(protocol_)
unwaited_protocols = [p for p in protocols if p not in waited_protocols]
if wait_timeout_seconds <= 0 and unwaited_protocols:
LoggerRoot.get_base_logger().warning(
"Timeout exceeded while waiting for {} endpoint(s)".format(",".join(unwaited_protocols))
)
return results
def _wait_for_external_endpoint(
self, wait_interval_seconds=3.0, wait_timeout_seconds=90.0, protocol="http", warn=True
):
if not self._external_endpoint_ports.get(protocol):
self.reload()
internal_port = self._get_runtime_properties().get(self._external_endpoint_internal_port_map[protocol])
if internal_port:
self._external_endpoint_ports[protocol] = internal_port
if not self._external_endpoint_ports.get(protocol):
if warn:
LoggerRoot.get_base_logger().warning("No external {} endpoints have been requested".format(protocol))
return None
start_time = time.time()
while True:
self.reload()
runtime_props = self._get_runtime_properties()
endpoint, browser_endpoint = None, None
if protocol == "http":
endpoint = runtime_props.get("endpoint")
browser_endpoint = runtime_props.get("browser_endpoint")
elif protocol == "tcp":
health_check = runtime_props.get("upstream_task_port")
if health_check:
endpoint = (
runtime_props.get(self._external_endpoint_address_map[protocol])
+ ":"
+ str(runtime_props.get(self._external_endpoint_port_map[protocol]))
)
if endpoint or browser_endpoint:
return {
"endpoint": endpoint,
"browser_endpoint": browser_endpoint,
"port": self._external_endpoint_ports[protocol],
"protocol": protocol,
}
if time.time() >= start_time + wait_timeout_seconds:
if warn:
LoggerRoot.get_base_logger().warning(
"Timeout exceeded while waiting for {} endpoint".format(protocol)
)
return None
time.sleep(wait_interval_seconds)
def list_external_endpoints(self, protocol=None):
# type: (Optional[str]) -> List[Dict]
"""
List all external endpoints assigned
:param protocol: If None, list all external endpoints. Otherwise, only list endpoints
that use this protocol
:return: A list of dictionaries. Each dictionary contains the following values:
- endpoint - raw endpoint. One might need to authenticate in order to use this endpoint
- browser_endpoint - endpoint to be used in browser. Authentication will be handled via the browser
- port - the port exposed by the application
- protocol - the protocol used by the endpoint
"""
Session.verify_feature_set("advanced")
runtime_props = self._get_runtime_properties()
results = []
protocols = [protocol] if protocol is not None else ["http", "tcp"]
for protocol in protocols:
internal_port = runtime_props.get(self._external_endpoint_internal_port_map[protocol])
if internal_port:
self._external_endpoint_ports[protocol] = internal_port
else:
continue
endpoint, browser_endpoint = None, None
if protocol == "http":
endpoint = runtime_props.get("endpoint")
browser_endpoint = runtime_props.get("browser_endpoint")
elif protocol == "tcp":
health_check = runtime_props.get("upstream_task_port")
if health_check:
endpoint = (
runtime_props.get(self._external_endpoint_address_map[protocol])
+ ":"
+ str(runtime_props.get(self._external_endpoint_port_map[protocol]))
)
if endpoint or browser_endpoint:
results.append(
{
"endpoint": endpoint,
"browser_endpoint": browser_endpoint,
"port": internal_port,
"protocol": protocol,
}
)
return results
@classmethod
def create(
cls,
project_name=None, # type: Optional[str]
task_name=None, # type: Optional[str]
task_type=None, # type: Optional[str]
repo=None, # type: Optional[str]
branch=None, # type: Optional[str]
commit=None, # type: Optional[str]
script=None, # type: Optional[str]
working_directory=None, # type: Optional[str]
packages=None, # type: Optional[Union[bool, Sequence[str]]]
requirements_file=None, # type: Optional[Union[str, Path]]
docker=None, # type: Optional[str]
docker_args=None, # type: Optional[str]
docker_bash_setup_script=None, # type: Optional[str]
argparse_args=None, # type: Optional[Sequence[Tuple[str, str]]]
base_task_id=None, # type: Optional[str]
add_task_init_call=True, # type: bool
force_single_script_file=False, # type: bool
):
# type: (...) -> TaskInstance
"""
Manually create and populate a new Task (experiment) in the system.
If the code does not already contain a call to ``Task.init``, pass add_task_init_call=True,
and the code will be patched in remote execution (i.e. when executed by `clearml-agent`)
.. note::
This method **always** creates a new Task.
Use :meth:`Task.init` method to automatically create and populate task for the running process.
To reference an existing Task, call the :meth:`Task.get_task` method .
:param project_name: Set the project name for the task. Required if base_task_id is None.
:param task_name: Set the name of the remote task. Required if base_task_id is None.
:param task_type: Optional, The task type to be created. Supported values: 'training', 'testing', 'inference',
'data_processing', 'application', 'monitor', 'controller', 'optimizer', 'service', 'qc', 'custom'
:param repo: Remote URL for the repository to use, or path to local copy of the git repository.
Example: 'https://github.com/allegroai/clearml.git' or '~/project/repo'. If ``repo`` is specified, then
the ``script`` parameter must also be specified
:param branch: Select specific repository branch/tag (implies the latest commit from the branch)
:param commit: Select specific commit ID to use (default: latest commit,
or when used with local repository matching the local commit ID)
:param script: Specify the entry point script for the remote execution. When used in tandem with
remote git repository the script should be a relative path inside the repository,
for example: './source/train.py' . When used with local repository path it supports a
direct path to a file inside the local repository itself, for example: '~/project/source/train.py'
:param working_directory: Working directory to launch the script from. Default: repository root folder.
Relative to repo root or local folder.
:param packages: Manually specify a list of required packages. Example: ``["tqdm>=2.1", "scikit-learn"]``
or `True` to automatically create requirements
based on locally installed packages (repository must be local).
:param requirements_file: Specify requirements.txt file to install when setting the session.
If not provided, the requirements.txt from the repository will be used.
:param docker: Select the docker image to be executed in by the remote session
:param docker_args: Add docker arguments, pass a single string
:param docker_bash_setup_script: Add bash script to be executed
inside the docker before setting up the Task's environment
:param argparse_args: Arguments to pass to the remote execution, list of string pairs (argument, value)
Notice, only supported if the codebase itself uses argparse.ArgumentParser
:param base_task_id: Use a pre-existing task in the system, instead of a local repo/script.
Essentially clones an existing task and overrides arguments/requirements.
:param add_task_init_call: If True, a 'Task.init()' call is added to the script entry point in remote execution.
:param force_single_script_file: If True, do not auto-detect local repository
:return: The newly created Task (experiment)
:rtype: Task
"""
if cls.is_offline():
raise UsageError("Creating task in offline mode. Use 'Task.init' instead.")
if not project_name and not base_task_id:
if not cls.__main_task:
raise ValueError("Please provide project_name, no global task context found "
"(Task.current_task hasn't been called)")
project_name = cls.__main_task.get_project_name()
from .backend_interface.task.populate import CreateAndPopulate
manual_populate = CreateAndPopulate(
project_name=project_name, task_name=task_name, task_type=task_type,
repo=repo, branch=branch, commit=commit,
script=script, working_directory=working_directory,
packages=packages, requirements_file=requirements_file,
docker=docker, docker_args=docker_args, docker_bash_setup_script=docker_bash_setup_script,
base_task_id=base_task_id,
add_task_init_call=add_task_init_call,
force_single_script_file=force_single_script_file,
raise_on_missing_entries=False,
)
task = manual_populate.create_task()
if task and argparse_args:
manual_populate.update_task_args(argparse_args)
task.reload()
return task
@classmethod
def get_by_name(cls, task_name):
# type: (str) -> TaskInstance
"""
.. note::
This method is deprecated, use :meth:`Task.get_task` instead.
Returns the most recent task with the given name from anywhere in the system as a Task object.
:param str task_name: The name of the task to search for.
:return: Task object of the most recent task with that name.
"""
warnings.warn("Warning: 'Task.get_by_name' is deprecated. Use 'Task.get_task' instead", DeprecationWarning)
return cls.get_task(task_name=task_name)
@classmethod
def get_task(
cls,
task_id=None, # type: Optional[str]
project_name=None, # type: Optional[str]
task_name=None, # type: Optional[str]
tags=None, # type: Optional[Sequence[str]]
allow_archived=True, # type: bool
task_filter=None # type: Optional[dict]
):
# type: (...) -> TaskInstance
"""
Get a Task by ID, or project name / task name combination.
For example:
The following code demonstrates calling ``Task.get_task`` to report a scalar to another Task. The output
of :meth:`.Logger.report_scalar` from testing is associated with the Task named ``training``. It allows
training and testing to run concurrently, because they initialized different Tasks (see :meth:`Task.init`
for information about initializing Tasks).
The training script:
.. code-block:: py
# initialize the training Task
task = Task.init('myProject', 'training')
# do some training
The testing script:
.. code-block:: py
# initialize the testing Task
task = Task.init('myProject', 'testing')
# get the training Task
train_task = Task.get_task(project_name='myProject', task_name='training')
# report metrics in the training Task
for x in range(10):
train_task.get_logger().report_scalar('title', 'series', value=x * 2, iteration=x)
:param str task_id: The ID (system UUID) of the experiment to get.
If specified, ``project_name`` and ``task_name`` are ignored.
:param str project_name: The project name of the Task to get.
:param str task_name: The name of the Task within ``project_name`` to get.
:param list tags: Filter based on the requested list of tags (strings). To exclude a tag add "-" prefix to the
tag. Example: ``["best", "-debug"]``.
The default behaviour is to join all tags with a logical "OR" operator.
To join all tags with a logical "AND" operator instead, use "__$all" as the first string, for example:
.. code-block:: py
["__$all", "best", "experiment", "ever"]
To join all tags with AND, but exclude a tag use "__$not" before the excluded tag, for example:
.. code-block:: py
["__$all", "best", "experiment", "ever", "__$not", "internal", "__$not", "test"]
The "OR" and "AND" operators apply to all tags that follow them until another operator is specified.
The NOT operator applies only to the immediately following tag.
For example:
.. code-block:: py
["__$all", "a", "b", "c", "__$or", "d", "__$not", "e", "__$and", "__$or" "f", "g"]
This example means ("a" AND "b" AND "c" AND ("d" OR NOT "e") AND ("f" OR "g")).
See https://clear.ml/docs/latest/docs/clearml_sdk/task_sdk/#tag-filters for more information.
:param bool allow_archived: Only applicable if *not* using specific ``task_id``,
If True (default), allow to return archived Tasks, if False filter out archived Tasks
:param bool task_filter: Only applicable if *not* using specific ``task_id``,
Pass additional query filters, on top of project/name. See details in Task.get_tasks.
:return: The Task specified by ID, or project name / experiment name combination.
:rtype: Task
"""
return cls.__get_task(
task_id=task_id, project_name=project_name, task_name=task_name, tags=tags,
include_archived=allow_archived, task_filter=task_filter,
)
@classmethod
def get_tasks(
cls,
task_ids=None, # type: Optional[Sequence[str]]
project_name=None, # type: Optional[Union[Sequence[str],str]]
task_name=None, # type: Optional[str]
tags=None, # type: Optional[Sequence[str]]
allow_archived=True, # type: bool
task_filter=None # type: Optional[Dict]
):
# type: (...) -> List[TaskInstance]
"""
Get a list of Tasks objects matching the queries/filters:
- A list of specific Task IDs.
- Filter Tasks based on specific fields:
project name (including partial match), task name (including partial match), tags
Apply Additional advanced filtering with `task_filter`
.. note::
This function returns the most recent 500 tasks. If you wish to retrieve older tasks
use ``Task.query_tasks()``
:param list(str) task_ids: The IDs (system UUID) of experiments to get.
If ``task_ids`` specified, then ``project_name`` and ``task_name`` are ignored.
:param str project_name: The project name of the Tasks to get. To get the experiment
in all projects, use the default value of ``None``. (Optional)
Use a list of strings for multiple optional project names.
:param str task_name: The full name or partial name of the Tasks to match within the specified
``project_name`` (or all projects if ``project_name`` is ``None``).
This method supports regular expressions for name matching (if you wish to match special characters and
avoid any regex behaviour, use re.escape()). (Optional)
To match an exact task name (i.e. not partial matching),
add ^/$ at the beginning/end of the string, for example: "^exact_task_name_here$"
:param list tags: Filter based on the requested list of tags (strings). To exclude a tag add "-" prefix to the
tag. Example: ``["best", "-debug"]``.
The default behaviour is to join all tags with a logical "OR" operator.
To join all tags with a logical "AND" operator instead, use "__$all" as the first string, for example:
.. code-block:: py
["__$all", "best", "experiment", "ever"]
To join all tags with AND, but exclude a tag use "__$not" before the excluded tag, for example:
.. code-block:: py
["__$all", "best", "experiment", "ever", "__$not", "internal", "__$not", "test"]
The "OR" and "AND" operators apply to all tags that follow them until another operator is specified.
The NOT operator applies only to the immediately following tag.
For example:
.. code-block:: py
["__$all", "a", "b", "c", "__$or", "d", "__$not", "e", "__$and", "__$or" "f", "g"]
This example means ("a" AND "b" AND "c" AND ("d" OR NOT "e") AND ("f" OR "g")).
See https://clear.ml/docs/latest/docs/clearml_sdk/task_sdk/#tag-filters for more information.
:param bool allow_archived: If True (default), allow to return archived Tasks, if False filter out archived Tasks
:param dict task_filter: filter and order Tasks.
See :class:`.backend_api.service.v?.tasks.GetAllRequest` for details; the ? needs to be replaced by the appropriate version.
- ``parent`` - (str) filter by parent task-id matching
- ``search_text`` - (str) free text search (in task fields comment/name/id)
- ``status`` - List[str] List of valid statuses. Options are: "created", "queued", "in_progress", "stopped", "published", "publishing", "closed", "failed", "completed", "unknown"
- ``type`` - List[str] List of valid task types. Options are: 'training', 'testing', 'inference', 'data_processing', 'application', 'monitor', 'controller', 'optimizer', 'service', 'qc'. 'custom'
- ``user`` - List[str] Filter based on Task's user owner, provide list of valid user IDs.
- ``order_by`` - List[str] List of field names to order by. When ``search_text`` is used. Use '-' prefix to specify descending order. Optional, recommended when using page. Example: ``order_by=['-last_update']``
- ``_all_`` - dict(fields=[], pattern='') Match string `pattern` (regular expression) appearing in All `fields`. Example: dict(fields=['script.repository'], pattern='github.com/user')
- ``_any_`` - dict(fields=[], pattern='') Match string `pattern` (regular expression) appearing in Any of the `fields`. Example: dict(fields=['comment', 'name'], pattern='my comment')
- Examples - ``{'status': ['stopped'], 'order_by': ["-last_update"]}`` , ``{'order_by'=['-last_update'], '_all_'=dict(fields=['script.repository'], pattern='github.com/user'))``
:return: The Tasks specified by the parameter combinations (see the parameters).
:rtype: List[Task]
"""
task_filter = task_filter or {}
if not allow_archived:
task_filter['system_tags'] = (task_filter.get('system_tags') or []) + ['-{}'.format(cls.archived_tag)]
return cls.__get_tasks(task_ids=task_ids, project_name=project_name, tags=tags,
task_name=task_name, **task_filter)
@classmethod
def query_tasks(
cls,
project_name=None, # type: Optional[Union[Sequence[str],str]]
task_name=None, # type: Optional[str]
tags=None, # type: Optional[Sequence[str]]
additional_return_fields=None, # type: Optional[Sequence[str]]
task_filter=None, # type: Optional[Dict]
):
# type: (...) -> Union[List[str], List[Dict[str, str]]]
"""
Get a list of Tasks ID matching the specific query/filter.
Notice, if `additional_return_fields` is specified, returns a list of
dictionaries with requested fields (dict per Task)
:param str project_name: The project name of the Tasks to get. To get the experiment
in all projects, use the default value of ``None``. (Optional)
Use a list of strings for multiple optional project names.
:param str task_name: The full name or partial name of the Tasks to match within the specified
``project_name`` (or all projects if ``project_name`` is ``None``).
This method supports regular expressions for name matching (if you wish to match special characters and
avoid any regex behaviour, use re.escape()). (Optional)
:param str project_name: project name (str) the task belongs to (use None for all projects)
:param str task_name: task name (str) within the selected project
Return any partial match of task_name, regular expressions matching is also supported.
If None is passed, returns all tasks within the project
:param list tags: Filter based on the requested list of tags (strings).
To exclude a tag add "-" prefix to the tag. Example: ``["best", "-debug"]``.
The default behaviour is to join all tags with a logical "OR" operator.
To join all tags with a logical "AND" operator instead, use "__$all" as the first string, for example:
.. code-block:: py
["__$all", "best", "experiment", "ever"]
To join all tags with AND, but exclude a tag use "__$not" before the excluded tag, for example:
.. code-block:: py
["__$all", "best", "experiment", "ever", "__$not", "internal", "__$not", "test"]
The "OR" and "AND" operators apply to all tags that follow them until another operator is specified.
The NOT operator applies only to the immediately following tag.
For example:
.. code-block:: py
["__$all", "a", "b", "c", "__$or", "d", "__$not", "e", "__$and", "__$or" "f", "g"]
This example means ("a" AND "b" AND "c" AND ("d" OR NOT "e") AND ("f" OR "g")).
See https://clear.ml/docs/latest/docs/clearml_sdk/task_sdk/#tag-filters for more information.
:param list additional_return_fields: Optional, if not provided return a list of Task IDs.
If provided return dict per Task with the additional requested fields.
Example: ``returned_fields=['last_updated', 'user', 'script.repository']`` will return a list of dict:
``[{'id': 'task_id', 'last_update': datetime.datetime(), 'user': 'user_id', 'script.repository': 'https://github.com/user/'}, ]``
:param dict task_filter: filter and order Tasks.
See :class:`.backend_api.service.v?.tasks.GetAllRequest` for details; the ? needs to be replaced by the appropriate version.
- ``parent`` - (str) filter by parent task-id matching
- ``search_text`` - (str) free text search (in task fields comment/name/id)
- ``status`` - List[str] List of valid statuses. Options are: "created", "queued", "in_progress", "stopped", "published", "publishing", "closed", "failed", "completed", "unknown"
- ``type`` - List[Union[str, TaskTypes]] List of valid task types. Options are: 'training', 'testing', 'inference', 'data_processing', 'application', 'monitor', 'controller', 'optimizer', 'service', 'qc'. 'custom'
- ``user`` - List[str] Filter based on Task's user owner, provide list of valid user IDs.
- ``order_by`` - List[str] List of field names to order by. When search_text is used. Use '-' prefix to specify descending order. Optional, recommended when using page. Example: ``order_by=['-last_update']``
- ``_all_`` - dict(fields=[], pattern='') Match string ``pattern`` (regular expression) appearing in All `fields`. ``dict(fields=['script.repository'], pattern='github.com/user')``
- ``_any_`` - dict(fields=[], pattern='') Match string `pattern` (regular expression) appearing in Any of the `fields`. `dict(fields=['comment', 'name'], pattern='my comment')`
- Examples: ``{'status': ['stopped'], 'order_by': ["-last_update"]}``, ``{'order_by'=['-last_update'], '_all_'=dict(fields=['script.repository'], pattern='github.com/user')}``
:return: The Tasks specified by the parameter combinations (see the parameters).
"""
task_filter = task_filter or {}
if tags:
task_filter['tags'] = (task_filter.get('tags') or []) + list(tags)
return_fields = {}
if additional_return_fields:
return_fields = set(list(additional_return_fields) + ['id'])
task_filter['only_fields'] = (task_filter.get('only_fields') or []) + list(return_fields)
if task_filter.get('type'):
task_filter['type'] = [str(task_type) for task_type in task_filter['type']]
results = cls._query_tasks(project_name=project_name, task_name=task_name, **task_filter)
return [t.id for t in results] if not additional_return_fields else \
[{k: cls._get_data_property(prop_path=k, data=r, raise_on_error=False, log_on_error=False)
for k in return_fields}
for r in results]
@property
def output_uri(self):
# type: () -> str
"""
The storage / output url for this task. This is the default location for output models and other artifacts.
:return: The url string.
"""
return self.storage_uri
@property
def last_worker(self):
# type: () -> str
"""
ID of last worker that handled the task.
:return: The worker ID.
"""
return self._data.last_worker
@output_uri.setter
def output_uri(self, value):
# type: (Union[str, bool]) -> None
"""
Set the storage / output url for this task. This is the default location for output models and other artifacts.
:param str/bool value: The value to set for output URI. Can be either a bucket link, True for default server
or False. Check Task.init reference docs for more info (output_uri is a parameter).
"""
# check if this is boolean
if value is False:
value = None
elif value is True:
value = str(self.__default_output_uri or self._get_default_report_storage_uri())
# check if we have the correct packages / configuration
if value and value != self.storage_uri:
from .storage.helper import StorageHelper
helper = StorageHelper.get(value)
if not helper:
raise ValueError("Could not get access credentials for '{}' "
", check configuration file ~/clearml.conf".format(value))
helper.check_write_permissions(value)
self.storage_uri = value
@property
def artifacts(self):
# type: () -> Dict[str, Artifact]
"""
A read-only dictionary of Task artifacts (name, artifact).
:return: The artifacts.
"""
if not Session.check_min_api_version('2.3'):
return ReadOnlyDict()
artifacts_pairs = []
if self.data.execution and self.data.execution.artifacts:
artifacts_pairs = [(a.key, Artifact(a)) for a in self.data.execution.artifacts]
if self._artifacts_manager:
artifacts_pairs += list(self._artifacts_manager.registered_artifacts.items())
return ReadOnlyDict(artifacts_pairs)
@property
def models(self):
# type: () -> Mapping[str, Sequence[Model]]
"""
Read-only dictionary of the Task's loaded/stored models.
:return: A dictionary-like object with "input"/"output" keys and input/output properties, pointing to a
list-like object containing Model objects. Each list-like object also acts as a dictionary, mapping
model name to an appropriate model instance.
Get input/output models:
.. code-block:: py
task.models.input
task.models["input"]
task.models.output
task.models["output"]
Get the last output model:
.. code-block:: py
task.models.output[-1]
Get a model by name:
.. code-block:: py
task.models.output["model name"]
"""
return self.get_models()
@property
def logger(self):
# type: () -> Logger
"""
Get a Logger object for reporting, for this task context. You can view all Logger report output associated with
the Task for which this method is called, including metrics, plots, text, tables, and images, in the
**ClearML Web-App (UI)**.
:return: The Logger object for the current Task (experiment).
"""
return self.get_logger()
@classmethod
def clone(
cls,
source_task=None, # type: Optional[Union[Task, str]]
name=None, # type: Optional[str]
comment=None, # type: Optional[str]
parent=None, # type: Optional[str]
project=None, # type: Optional[str]
):
# type: (...) -> TaskInstance
"""
Create a duplicate (a clone) of a Task (experiment). The status of the cloned Task is ``Draft``
and modifiable.
Use this method to manage experiments and for autoML.
:param str source_task: The Task to clone. Specify a Task object or a Task ID. (Optional)
:param str name: The name of the new cloned Task. (Optional)
:param str comment: A comment / description for the new cloned Task. (Optional)
:param str parent: The ID of the parent Task of the new Task.
- If ``parent`` is not specified, then ``parent`` is set to ``source_task.parent``.
- If ``parent`` is not specified and ``source_task.parent`` is not available, then ``parent`` set to ``source_task``.
:param str project: The ID of the project in which to create the new Task.
If ``None``, the new task inherits the original Task's project. (Optional)
:return: The new cloned Task (experiment).
:rtype: Task
"""
assert isinstance(source_task, (six.string_types, Task))
if not Session.check_min_api_version('2.4'):
raise ValueError("ClearML-server does not support DevOps features, "
"upgrade clearml-server to 0.12.0 or above")
task_id = source_task if isinstance(source_task, six.string_types) else source_task.id
if not parent:
if isinstance(source_task, six.string_types):
source_task = cls.get_task(task_id=source_task)
parent = source_task.id if not source_task.parent else source_task.parent
elif isinstance(parent, Task):
parent = parent.id
cloned_task_id = cls._clone_task(cloned_task_id=task_id, name=name, comment=comment,
parent=parent, project=project)
cloned_task = cls.get_task(task_id=cloned_task_id)
return cloned_task
@classmethod
def enqueue(cls, task, queue_name=None, queue_id=None, force=False):
# type: (Union[Task, str], Optional[str], Optional[str], bool) -> Any
"""
Enqueue a Task for execution, by adding it to an execution queue.
.. note::
A worker daemon must be listening at the queue for the worker to fetch the Task and execute it,
see "ClearML Agent" in the ClearML Documentation.
:param Task/str task: The Task to enqueue. Specify a Task object or Task ID.
:param str queue_name: The name of the queue. If not specified, then ``queue_id`` must be specified.
:param str queue_id: The ID of the queue. If not specified, then ``queue_name`` must be specified.
:param bool force: If True, reset the Task if necessary before enqueuing it
:return: An enqueue JSON response.
.. code-block:: javascript
{
"queued": 1,
"updated": 1,
"fields": {
"status": "queued",
"status_reason": "",
"status_message": "",
"status_changed": "2020-02-24T15:05:35.426770+00:00",
"last_update": "2020-02-24T15:05:35.426770+00:00",
"execution.queue": "2bd96ab2d9e54b578cc2fb195e52c7cf"
}
}
- ``queued`` - The number of Tasks enqueued (an integer or ``null``).
- ``updated`` - The number of Tasks updated (an integer or ``null``).
- ``fields``
- ``status`` - The status of the experiment.
- ``status_reason`` - The reason for the last status change.
- ``status_message`` - Information about the status.
- ``status_changed`` - The last status change date and time (ISO 8601 format).
- ``last_update`` - The last Task update time, including Task creation, update, change, or events for this task (ISO 8601 format).
- ``execution.queue`` - The ID of the queue where the Task is enqueued. ``null`` indicates not enqueued.
"""
assert isinstance(task, (six.string_types, Task))
if not Session.check_min_api_version('2.4'):
raise ValueError("ClearML-server does not support DevOps features, "
"upgrade clearml-server to 0.12.0 or above")
# make sure we have wither name ot id
mutually_exclusive(queue_name=queue_name, queue_id=queue_id)
task_id = task if isinstance(task, six.string_types) else task.id
session = cls._get_default_session()
if not queue_id:
queue_id = get_queue_id(session, queue_name)
if not queue_id:
raise ValueError('Could not find queue named "{}"'.format(queue_name))
req = tasks.EnqueueRequest(task=task_id, queue=queue_id)
exception = None
res = None
try:
res = cls._send(session=session, req=req)
ok = res.ok()
except Exception as e:
exception = e
ok = False
if not ok:
if not force:
if res:
raise ValueError(res.response)
raise exception
task = cls.get_task(task_id=task) if isinstance(task, str) else task
task.reset(set_started_on_success=False, force=True)
req = tasks.EnqueueRequest(task=task_id, queue=queue_id)
res = cls._send(session=session, req=req)
if not res.ok():
raise ValueError(res.response)
resp = res.response
return resp
@classmethod
def get_num_enqueued_tasks(cls, queue_name=None, queue_id=None):
# type: (Optional[str], Optional[str]) -> int
"""
Get the number of tasks enqueued in a given queue.
:param queue_name: The name of the queue. If not specified, then ``queue_id`` must be specified
:param queue_id: The ID of the queue. If not specified, then ``queue_name`` must be specified
:return: The number of tasks enqueued in the given queue
"""
if not Session.check_min_api_server_version("2.20", raise_error=True):
raise ValueError("You version of clearml-server does not support the 'queues.get_num_entries' endpoint")
mutually_exclusive(queue_name=queue_name, queue_id=queue_id)
session = cls._get_default_session()
if not queue_id:
queue_id = get_queue_id(session, queue_name)
if not queue_id:
raise ValueError('Could not find queue named "{}"'.format(queue_name))
result = get_num_enqueued_tasks(session, queue_id)
if result is None:
raise ValueError("Could not query the number of enqueued tasks in queue with ID {}".format(queue_id))
return result
@classmethod
def dequeue(cls, task):
# type: (Union[Task, str]) -> Any
"""
Dequeue (remove) a Task from an execution queue.
:param Task/str task: The Task to dequeue. Specify a Task object or Task ID.
:return: A dequeue JSON response.
.. code-block:: javascript
{
"dequeued": 1,
"updated": 1,
"fields": {
"status": "created",
"status_reason": "",
"status_message": "",
"status_changed": "2020-02-24T16:43:43.057320+00:00",
"last_update": "2020-02-24T16:43:43.057320+00:00",
"execution.queue": null
}
}
- ``dequeued`` - The number of Tasks enqueued (an integer or ``null``).
- ``fields``
- ``status`` - The status of the experiment.
- ``status_reason`` - The reason for the last status change.
- ``status_message`` - Information about the status.
- ``status_changed`` - The last status change date and time in ISO 8601 format.
- ``last_update`` - The last time the Task was created, updated,
changed, or events for this task were reported.
- ``execution.queue`` - The ID of the queue where the Task is enqueued. ``null`` indicates not enqueued.
- ``updated`` - The number of Tasks updated (an integer or ``null``).
"""
assert isinstance(task, (six.string_types, Task))
if not Session.check_min_api_version('2.4'):
raise ValueError("ClearML-server does not support DevOps features, "
"upgrade clearml-server to 0.12.0 or above")
task_id = task if isinstance(task, six.string_types) else task.id
session = cls._get_default_session()
req = tasks.DequeueRequest(task=task_id)
res = cls._send(session=session, req=req)
resp = res.response
return resp
def set_progress(self, progress):
# type: (int) -> ()
"""
Sets Task's progress (0 - 100)
Progress is a field computed and reported by the user.
:param progress: numeric value (0 - 100)
"""
if not isinstance(progress, int) or progress < 0 or progress > 100:
self.log.warning("Can't set progress {} as it is not and int between 0 and 100".format(progress))
return
self._set_runtime_properties({"progress": str(progress)})
def get_progress(self):
# type: () -> (Optional[int])
"""
Gets Task's progress (0 - 100)
:return: Task's progress as an int.
In case the progress doesn't exist, None will be returned
"""
progress = self._get_runtime_properties().get("progress")
if progress is None or not progress.isnumeric():
return None
return int(progress)
def add_tags(self, tags):
# type: (Union[Sequence[str], str]) -> None
"""
Add Tags to this task. Old tags are not deleted. When executing a Task (experiment) remotely,
this method has no effect.
:param tags: A list of tags which describe the Task to add.
"""
if isinstance(tags, six.string_types):
tags = tags.split(" ")
self.data.tags = list(set((self.data.tags or []) + tags))
self._edit(tags=self.data.tags)
def connect(self, mutable, name=None, ignore_remote_overrides=False):
# type: (Any, Optional[str], bool) -> Any
"""
Connect an object to a Task object. This connects an experiment component (part of an experiment) to the
experiment. For example, an experiment component can be a valid object containing some hyperparameters, or a :class:`Model`.
When running remotely, the value of the connected object is overridden by the corresponding value found
under the experiment's UI/backend (unless `ignore_remote_overrides` is True).
:param object mutable: The experiment component to connect. The object must be one of the following types:
- argparse - An argparse object for parameters.
- dict - A dictionary for parameters. Note: only keys of type `str` are supported.
- TaskParameters - A TaskParameters object.
- :class:`Model` - A model object for initial model warmup, or for model update/snapshot uploading. In practice the model should be either :class:`InputModel` or :class:`OutputModel`.
- type - A Class type, storing all class properties (excluding '_' prefixed properties).
- object - A class instance, storing all instance properties (excluding '_' prefixed properties).
:param str name: A section name associated with the connected object, if 'name' is None defaults to 'General'
Currently, `name` is only supported for `dict` and `TaskParameter` objects, and should be omitted for the other supported types. (Optional)
For example, by setting `name='General'` the connected dictionary will be under the General section in the hyperparameters section.
While by setting `name='Train'` the connected dictionary will be under the Train section in the hyperparameters section.
:param ignore_remote_overrides: If True, ignore UI/backend overrides when running remotely.
Default is False, meaning that any changes made in the UI/backend will be applied in remote execution.
:return: It will return the same object that was passed as the `mutable` argument to the method, except if the type of the object is dict.
For dicts the :meth:`Task.connect` will return the dict decorated as a `ProxyDictPostWrite`.
This is done to allow propagating the updates from the connected object.
:raise: Raises an exception if passed an unsupported object.
"""
# input model connect and task parameters will handle this instead
if not isinstance(mutable, (InputModel, TaskParameters)):
ignore_remote_overrides = self._handle_ignore_remote_overrides(
(name or "General") + "/_ignore_remote_overrides_", ignore_remote_overrides
)
# dispatching by match order
dispatch = (
(OutputModel, self._connect_output_model),
(InputModel, self._connect_input_model),
(ArgumentParser, self._connect_argparse),
(dict, self._connect_dictionary),
(TaskParameters, self._connect_task_parameters),
(type, self._connect_object),
(object, self._connect_object),
)
multi_config_support = Session.check_min_api_version('2.9')
if multi_config_support and not name and not isinstance(mutable, (OutputModel, InputModel)):
name = self._default_configuration_section_name
if not multi_config_support and name and name != self._default_configuration_section_name:
raise ValueError("Multiple configurations is not supported with the current 'clearml-server', "
"please upgrade to the latest version")
for mutable_type, method in dispatch:
if isinstance(mutable, mutable_type):
return method(mutable, name=name, ignore_remote_overrides=ignore_remote_overrides)
raise Exception('Unsupported mutable type %s: no connect function found' % type(mutable).__name__)
def set_packages(self, packages):
# type: (Union[str, Path, Sequence[str]]) -> ()
"""
Manually specify a list of required packages or a local requirements.txt file. Note that this will
overwrite all existing packages.
When running remotely this call is ignored
:param packages: The list of packages or the path to the requirements.txt file.
Example: ``["tqdm>=2.1", "scikit-learn"]`` or ``"./requirements.txt"`` or ``""``
Use an empty string (packages="") to clear the requirements section (remote execution will use
requirements.txt from the git repository if the file exists)
"""
if running_remotely() or packages is None:
return
self._wait_for_repo_detection(timeout=300.)
if packages and isinstance(packages, (str, Path)) and Path(packages).is_file():
with open(Path(packages).as_posix(), "rt") as f:
# noinspection PyProtectedMember
self._update_requirements([line.strip() for line in f.readlines()])
return
# noinspection PyProtectedMember
self._update_requirements(packages or "")
def set_repo(self, repo=None, branch=None, commit=None):
# type: (Optional[str], Optional[str], Optional[str]) -> ()
"""
Specify a repository to attach to the function.
Allow users to execute the task inside the specified repository, enabling them to load modules/script
from the repository. Notice the execution work directory will be the repository root folder.
Supports both git repo url link, and local repository path (automatically converted into the remote
git/commit as is currently checkout).
Example remote url: "https://github.com/user/repo.git".
Example local repo copy: "./repo" - will automatically store the remote
repo url and commit ID based on the locally cloned copy.
When executing remotely, this call will not override the repository data (it is ignored)
:param repo: Optional, remote URL for the repository to use, OR path to local copy of the git repository.
Use an empty string to clear the repo.
Example: "https://github.com/allegroai/clearml.git" or "~/project/repo" or ""
:param branch: Optional, specify the remote repository branch (Ignored, if local repo path is used).
Use an empty string to clear the branch.
:param commit: Optional, specify the repository commit ID (Ignored, if local repo path is used).
Use an empty string to clear the commit.
"""
if running_remotely():
return
self._wait_for_repo_detection(timeout=300.)
with self._edit_lock:
self.reload()
if repo is not None:
# we cannot have None on the value itself
self.data.script.repository = repo or ""
if branch is not None:
# we cannot have None on the value itself
self.data.script.branch = branch or ""
if commit is not None:
# we cannot have None on the value itself
self.data.script.version_num = commit or ""
self._edit(script=self.data.script)
def get_requirements(self):
# type: () -> RequirementsDict
"""
Get the task's requirements
:return: A `RequirementsDict` object that holds the `pip`, `conda`, `orig_pip` requirements.
"""
if not running_remotely() and self.is_main_task():
self._wait_for_repo_detection(timeout=300.)
requirements_dict = RequirementsDict()
requirements_dict.update(self.data.script.requirements)
return requirements_dict
def connect_configuration(self, configuration, name=None, description=None, ignore_remote_overrides=False):
# type: (Union[Mapping, list, Path, str], Optional[str], Optional[str], bool) -> Union[dict, Path, str]
"""
Connect a configuration dictionary or configuration file (pathlib.Path / str) to a Task object.
This method should be called before reading the configuration file.
For example, a local file:
.. code-block:: py
config_file = task.connect_configuration(config_file)
my_params = json.load(open(config_file,'rt'))
A parameter dictionary/list:
.. code-block:: py
my_params = task.connect_configuration(my_params)
When running remotely, the value of the connected configuration is overridden by the corresponding value found
under the experiment's UI/backend (unless `ignore_remote_overrides` is True).
:param configuration: The configuration. This is usually the configuration used in the model training process.
Specify one of the following:
- A dictionary/list - A dictionary containing the configuration. ClearML stores the configuration in
the **ClearML Server** (backend), in a HOCON format (JSON-like format) which is editable.
- A ``pathlib2.Path`` string - A path to the configuration file. ClearML stores the content of the file.
A local path must be relative path. When executing a Task remotely in a worker, the contents brought
from the **ClearML Server** (backend) overwrites the contents of the file.
:param str name: Configuration section name. default: 'General'
Allowing users to store multiple configuration dicts/files
:param str description: Configuration section description (text). default: None
:param bool ignore_remote_overrides: If True, ignore UI/backend overrides when running remotely.
Default is False, meaning that any changes made in the UI/backend will be applied in remote execution.
:return: If a dictionary is specified, then a dictionary is returned. If pathlib2.Path / string is
specified, then a path to a local configuration file is returned. Configuration object.
"""
ignore_remote_overrides = self._handle_ignore_remote_overrides(
(name or "General") + "/_ignore_remote_overrides_config_", ignore_remote_overrides
)
pathlib_Path = None # noqa
cast_Path = Path
if not isinstance(configuration, (dict, list, Path, six.string_types)):
try:
from pathlib import Path as pathlib_Path # noqa
except ImportError:
pass
if not pathlib_Path or not isinstance(configuration, pathlib_Path):
raise ValueError("connect_configuration supports `dict`, `str` and 'Path' types, "
"{} is not supported".format(type(configuration)))
if pathlib_Path and isinstance(configuration, pathlib_Path):
cast_Path = pathlib_Path
multi_config_support = Session.check_min_api_version('2.9')
if multi_config_support and not name:
name = self._default_configuration_section_name
if not multi_config_support and name and name != self._default_configuration_section_name:
raise ValueError("Multiple configurations is not supported with the current 'clearml-server', "
"please upgrade to the latest version")
# parameter dictionary
if isinstance(configuration, (dict, list,)):
def _update_config_dict(task, config_dict):
if multi_config_support:
# noinspection PyProtectedMember
task._set_configuration(
name=name, description=description, config_type='dictionary', config_dict=config_dict)
else:
# noinspection PyProtectedMember
task._set_model_config(config_dict=config_dict)
def get_dev_config(configuration_):
if multi_config_support:
self._set_configuration(
name=name, description=description, config_type="dictionary", config_dict=configuration_
)
else:
self._set_model_config(config_dict=configuration)
if isinstance(configuration_, dict):
configuration_ = ProxyDictPostWrite(self, _update_config_dict, configuration_)
return configuration_
if not running_remotely() or not (self.is_main_task() or self._is_remote_main_task()) or ignore_remote_overrides:
configuration = get_dev_config(configuration)
else:
# noinspection PyBroadException
try:
remote_configuration = self._get_configuration_dict(name=name) \
if multi_config_support else self._get_model_config_dict()
except Exception:
remote_configuration = None
if remote_configuration is None:
LoggerRoot.get_base_logger().warning(
"Could not retrieve remote configuration named \'{}\'\n"
"Using default configuration: {}".format(name, str(configuration)))
# update back configuration section
if multi_config_support:
self._set_configuration(
name=name, description=description,
config_type='dictionary', config_dict=configuration)
return configuration
if not remote_configuration:
configuration = get_dev_config(configuration)
elif isinstance(configuration, dict):
configuration.clear()
configuration.update(remote_configuration)
configuration = ProxyDictPreWrite(False, False, **configuration)
elif isinstance(configuration, list):
configuration.clear()
configuration.extend(remote_configuration)
return configuration
# it is a path to a local file
if not running_remotely() or not (self.is_main_task() or self._is_remote_main_task()) or ignore_remote_overrides:
# check if not absolute path
configuration_path = cast_Path(configuration)
if not configuration_path.is_file():
ValueError("Configuration file does not exist")
try:
with open(configuration_path.as_posix(), 'rt') as f:
configuration_text = f.read()
except Exception:
raise ValueError("Could not connect configuration file {}, file could not be read".format(
configuration_path.as_posix()))
if multi_config_support:
self._set_configuration(
name=name, description=description,
config_type=configuration_path.suffixes[-1].lstrip('.')
if configuration_path.suffixes and configuration_path.suffixes[-1] else 'file',
config_text=configuration_text)
else:
self._set_model_config(config_text=configuration_text)
return configuration
else:
configuration_text = self._get_configuration_text(name=name) if multi_config_support \
else self._get_model_config_text()
if configuration_text is None:
LoggerRoot.get_base_logger().warning(
"Could not retrieve remote configuration named \'{}\'\n"
"Using default configuration: {}".format(name, str(configuration)))
# update back configuration section
if multi_config_support:
configuration_path = cast_Path(configuration)
if configuration_path.is_file():
with open(configuration_path.as_posix(), 'rt') as f:
configuration_text = f.read()
self._set_configuration(
name=name, description=description,
config_type=configuration_path.suffixes[-1].lstrip('.')
if configuration_path.suffixes and configuration_path.suffixes[-1] else 'file',
config_text=configuration_text)
return configuration
configuration_path = cast_Path(configuration)
fd, local_filename = mkstemp(prefix='clearml_task_config_',
suffix=configuration_path.suffixes[-1] if
configuration_path.suffixes else '.txt')
with open(fd, "w") as f:
f.write(configuration_text)
return cast_Path(local_filename) if isinstance(configuration, cast_Path) else local_filename
def connect_label_enumeration(self, enumeration, ignore_remote_overrides=False):
# type: (Dict[str, int], bool) -> Dict[str, int]
"""
Connect a label enumeration dictionary to a Task (experiment) object.
Later, when creating an output model, the model will include the label enumeration dictionary.
:param dict enumeration: A label enumeration dictionary of string (label) to integer (value) pairs.
For example:
.. code-block:: javascript
{
"background": 0,
"person": 1
}
:param ignore_remote_overrides: If True, ignore UI/backend overrides when running remotely.
Default is False, meaning that any changes made in the UI/backend will be applied in remote execution.
:return: The label enumeration dictionary (JSON).
"""
ignore_remote_overrides = self._handle_ignore_remote_overrides(
"General/_ignore_remote_overrides_label_enumeration_", ignore_remote_overrides
)
if not isinstance(enumeration, dict):
raise ValueError("connect_label_enumeration supports only `dict` type, "
"{} is not supported".format(type(enumeration)))
if (
not running_remotely()
or not (self.is_main_task() or self._is_remote_main_task())
or ignore_remote_overrides
):
self.set_model_label_enumeration(enumeration)
else:
# pop everything
enumeration.clear()
enumeration.update(self.get_labels_enumeration())
return enumeration
def get_logger(self):
# type: () -> Logger
"""
Get a Logger object for reporting, for this task context. You can view all Logger report output associated with
the Task for which this method is called, including metrics, plots, text, tables, and images, in the
**ClearML Web-App (UI)**.
:return: The Logger for the Task (experiment).
"""
return self._get_logger(auto_connect_streams=self._log_to_backend)
def launch_multi_node(
self,
total_num_nodes, # type: int
port=29500, # type: Optional[int]
queue=None, # type: Optional[str]
wait=False, # type: bool
addr=None, # type: Optional[str]
devices=None, # type: Optional[Union[int, Sequence[int]]]
hide_children=False # bool
):
"""
Enqueue multiple clones of the current task to a queue, allowing the task
to be ran by multiple workers in parallel. Each task running this way is called a node.
Each node has a rank The node that initialized the execution of the other nodes
is called the `master node` and it has a rank equal to 0.
A dictionary named `multi_node_instance` will be connected to the tasks.
One can use this dictionary to modify the behaviour of this function when running remotely.
The contents of this dictionary correspond to the parameters of this function, and they are:
- `total_num_nodes` - the total number of nodes, including the master node
- `queue` - the queue to enqueue the nodes to
The following environment variables, will be set:
- `MASTER_ADDR` - the address of the machine that the master node is running on
- `MASTER_PORT` - the open port of the machine that the master node is running on
- `WORLD_SIZE` - the total number of nodes, including the master
- `RANK` - the rank of the current node (master has rank 0)
One may use this function in conjuction with PyTorch's distributed communication package.
Note that `Task.launch_multi_node` should be called before `torch.distributed.init_process_group`.
For example:
.. code-block:: py
from clearml import Task
import torch
import torch.distributed as dist
def run(rank, size):
print('World size is ', size)
tensor = torch.zeros(1)
if rank == 0:
for i in range(1, size):
tensor += 1
dist.send(tensor=tensor, dst=i)
print('Sending from rank ', rank, ' to rank ', i, ' data: ', tensor[0])
else:
dist.recv(tensor=tensor, src=0)
print('Rank ', rank, ' received data: ', tensor[0])
if __name__ == '__main__':
task = Task.init('some_name', 'some_name')
task.execute_remotely(queue_name='queue')
config = task.launch_multi_node(4)
dist.init_process_group('gloo')
run(config.get('node_rank'), config.get('total_num_nodes'))
When using the ClearML cloud autoscaler apps, one needs to make sure the nodes can reach eachother.
The machines need to be in the same security group, the `MASTER_PORT` needs to be exposed and the
`MASTER_ADDR` needs to be the right private ip of the instance the master is running on.
For example, to achieve this, one can set the following Docker arguments in the `Additional ClearML Configuration` section:
.. code-block:: py
agent.extra_docker_arguments=["--ipc=host", "--network=host", "-p", "29500:29500", "--env", "CLEARML_MULTI_NODE_MASTER_DEF_ADDR=`hostname -I | awk '{print $1}'`"]`
:param total_num_nodes: The total number of nodes to be enqueued, including the master node,
which should already be enqueued when running remotely
:param port: Port opened by the master node. If the environment variable ``CLEARML_MULTI_NODE_MASTER_DEF_PORT``
is set, the value of this parameter will be set to the one defined in ``CLEARML_MULTI_NODE_MASTER_DEF_PORT``.
If ``CLEARML_MULTI_NODE_MASTER_DEF_PORT`` doesn't exist, but ``MASTER_PORT`` does, then the value of this
parameter will be set to the one defined in ``MASTER_PORT``. If neither environment variables exist,
the value passed to the parameter will be used
:param queue: The queue to enqueue the nodes to. Can be different from the queue the master
node is enqueued to. If None, the nodes will be enqueued to the same queue as the master node
:param wait: If True, the master node will wait for the other nodes to start
:param addr: The address of the master node's worker. If the environment variable
``CLEARML_MULTI_NODE_MASTER_DEF_ADDR`` is set, the value of this parameter will be set to
the one defined in ``CLEARML_MULTI_NODE_MASTER_DEF_ADDR``.
If ``CLEARML_MULTI_NODE_MASTER_DEF_ADDR`` doesn't exist, but ``MASTER_ADDR`` does, then the value of this
parameter will be set to the one defined in ``MASTER_ADDR``. If neither environment variables exist,
the value passed to the parameter will be used. If this value is None (default), the private IP of
the machine the master node is running on will be used.
:param devices: The devices to use. This can be a positive number indicating the number of devices to use,
a sequence of indices or the value ``-1`` to indicate all available devices should be used.
:param hide_children: If True, the children tasks will be hidden. Otherwise, they will be visible in the UI
:return: A dictionary containing relevant information regarding the multi node run. This dictionary has the following entries:
- `master_addr` - the address of the machine that the master node is running on
- `master_port` - the open port of the machine that the master node is running on
- `total_num_nodes` - the total number of nodes, including the master
- `queue` - the queue the nodes are enqueued to, excluding the master
- `node_rank` - the rank of the current node (master has rank 0)
- `wait` - if True, the master node will wait for the other nodes to start
"""
def set_launch_multi_node_runtime_props(task, conf):
# noinspection PyProtectedMember
task._set_runtime_properties(
{"{}/{}".format(self._launch_multi_node_section, k): v for k, v in conf.items()}
)
if total_num_nodes < 1:
raise UsageError("total_num_nodes needs to be at least 1")
if running_remotely() and not (self.data.execution and self.data.execution.queue) and not queue:
raise UsageError("Master task is not enqueued to any queue and the queue parameter is None")
master_conf = {
"master_addr": os.environ.get(
"CLEARML_MULTI_NODE_MASTER_DEF_ADDR", os.environ.get("MASTER_ADDR", addr or get_private_ip())
),
"master_port": int(
os.environ.get("CLEARML_MULTI_NODE_MASTER_DEF_PORT", os.environ.get("MASTER_PORT", port))
),
"node_rank": 0,
"wait": wait,
"devices": devices
}
editable_conf = {"total_num_nodes": total_num_nodes, "queue": queue}
editable_conf = self.connect(editable_conf, name=self._launch_multi_node_section)
if not running_remotely():
return master_conf
master_conf.update(editable_conf)
runtime_properties = self._get_runtime_properties()
remote_node_rank = runtime_properties.get("{}/node_rank".format(self._launch_multi_node_section))
current_conf = master_conf
if remote_node_rank:
# self is a child node, build the conf from the runtime proprerties
current_conf = {
entry: runtime_properties.get("{}/{}".format(self._launch_multi_node_section, entry))
for entry in master_conf.keys()
}
elif os.environ.get("CLEARML_MULTI_NODE_MASTER") is None:
nodes_to_wait = []
# self is the master node, enqueue the other nodes
set_launch_multi_node_runtime_props(self, master_conf)
for node_rank in range(1, master_conf.get("total_num_nodes", total_num_nodes)):
node = self.clone(source_task=self, parent=self.id)
node_conf = copy.deepcopy(master_conf)
node_conf["node_rank"] = node_rank
set_launch_multi_node_runtime_props(node, node_conf)
node.set_system_tags(
node.get_system_tags()
+ [self._launch_multi_node_instance_tag]
+ ([self.__hidden_tag] if hide_children else [])
)
if master_conf.get("queue"):
Task.enqueue(node, queue_name=master_conf["queue"])
else:
Task.enqueue(node, queue_id=self.data.execution.queue)
if master_conf.get("wait"):
nodes_to_wait.append(node)
for node_to_wait, rank in zip(nodes_to_wait, range(1, master_conf.get("total_num_nodes", total_num_nodes))):
self.log.info("Waiting for node with task ID {} and rank {}".format(node_to_wait.id, rank))
node_to_wait.wait_for_status(
status=(
Task.TaskStatusEnum.completed,
Task.TaskStatusEnum.stopped,
Task.TaskStatusEnum.closed,
Task.TaskStatusEnum.failed,
Task.TaskStatusEnum.in_progress,
),
check_interval_sec=10,
)
self.log.info("Node with task ID {} and rank {} detected".format(node_to_wait.id, rank))
os.environ["CLEARML_MULTI_NODE_MASTER"] = "1"
num_devices = 1
if devices is not None:
try:
num_devices = int(devices)
except TypeError:
try:
num_devices = len(devices)
except Exception as ex:
raise ValueError("Failed parsing number of devices: {}".format(ex))
except ValueError as ex:
raise ValueError("Failed parsing number of devices: {}".format(ex))
if num_devices < 0:
try:
import torch
num_devices = torch.cuda.device_count()
except ImportError:
raise ImportError(
"Could not import `torch` while finding the number of devices. "
"Please install it or set `devices` to a value different than -1"
)
os.environ["MASTER_ADDR"] = current_conf.get("master_addr", "")
os.environ["MASTER_PORT"] = str(current_conf.get("master_port", ""))
os.environ["RANK"] = str(
current_conf.get("node_rank", 0) * num_devices + int(os.environ.get("LOCAL_RANK", "0"))
)
os.environ["NODE_RANK"] = str(current_conf.get("node_rank", ""))
os.environ["WORLD_SIZE"] = str(current_conf.get("total_num_nodes", total_num_nodes) * num_devices)
return current_conf
def mark_started(self, force=False):
# type: (bool) -> ()
"""
Manually mark a Task as started (happens automatically)
:param bool force: If True, the task status will be changed to `started` regardless of the current Task state.
"""
# UI won't let us see metrics if we're not started
self.started(force=force)
self.reload()
def mark_stopped(self, force=False, status_message=None):
# type: (bool, Optional[str]) -> ()
"""
Manually mark a Task as stopped (also used in :meth:`_at_exit`)
:param bool force: If True, the task status will be changed to `stopped` regardless of the current Task state.
:param str status_message: Optional, add status change message to the stop request.
This message will be stored as status_message on the Task's info panel
"""
# flush any outstanding logs
self.flush(wait_for_uploads=True)
# mark task as stopped
self.stopped(force=force, status_message=str(status_message) if status_message else None)
def mark_stop_request(self, force=False, status_message=None):
# type: (bool, Optional[str]) -> ()
"""
Request a task to stop. this will not change the task status
but mark a request for an agent or SDK to actually stop the Task.
This will trigger the Task's abort callback, and at the end will
change the task status to stopped and kill the Task's processes
Notice: calling this on your own Task, will cause
the watchdog to call the on_abort callback and kill the process
:param bool force: If not True, call fails if the task status is not 'in_progress'
:param str status_message: Optional, add status change message to the stop request.
This message will be stored as status_message on the Task's info panel
"""
# flush any outstanding logs
self.flush(wait_for_uploads=True)
# request task stop
return self.stop_request(self, force=force, status_message=status_message)
def flush(self, wait_for_uploads=False):
# type: (bool) -> bool
"""
Flush any outstanding reports or console logs.
:param bool wait_for_uploads: Wait for all outstanding uploads to complete
- ``True`` - Wait
- ``False`` - Do not wait (default)
"""
# make sure model upload is done
if BackendModel.get_num_results() > 0 and wait_for_uploads:
BackendModel.wait_for_results()
# flush any outstanding logs
if self._logger:
# noinspection PyProtectedMember
self._logger._flush_stdout_handler()
if self.__reporter:
self.__reporter.flush()
if wait_for_uploads:
self.__reporter.wait_for_events()
LoggerRoot.flush()
return True
def reset(self, set_started_on_success=False, force=False):
# type: (bool, bool) -> None
"""
Reset a Task. ClearML reloads a Task after a successful reset.
When a worker executes a Task remotely, the Task does not reset unless
the ``force`` parameter is set to ``True`` (this avoids accidentally clearing logs and metrics).
:param bool set_started_on_success: If successful, automatically set the Task to `started`
- ``True`` - If successful, set to started.
- ``False`` - If successful, do not set to started. (default)
:param bool force: Force a Task reset, even when executing the Task (experiment) remotely in a worker
- ``True`` - Force
- ``False`` - Do not force (default)
"""
if not running_remotely() or not self.is_main_task() or force:
super(Task, self).reset(set_started_on_success=set_started_on_success, force=force)
def close(self):
"""
Closes the current Task and changes its status to "Completed".
Enables you to manually shut down the task from the process which opened the task.
This method does not terminate the (current) Python process, in contrast to :meth:`Task.mark_completed`.
After having :meth:`Task.close` -d a task, the respective object cannot be used anymore and
methods like :meth:`Task.connect` or :meth:`Task.connect_configuration` will throw a `ValueError`.
In order to obtain an object representing the task again, use methods like :meth:`Task.get_task`.
.. warning::
Only call :meth:`Task.close` if you are certain the Task is not needed.
"""
if self._at_exit_called:
return
# store is main before we call at_exit, because will will Null it
is_main = self.is_main_task()
is_sub_process = self.__is_subprocess()
# wait for repository detection (5 minutes should be reasonable time to detect all packages)
if self._logger and not self.__is_subprocess():
self._wait_for_repo_detection(timeout=300.)
self.__shutdown()
# unregister atexit callbacks and signal hooks, if we are the main task
if is_main:
self.__register_at_exit(None)
self._remove_signal_hooks()
self._remove_exception_hooks()
if not is_sub_process:
# make sure we enable multiple Task.init callas with reporting sub-processes
BackgroundMonitor.clear_main_process(self)
# noinspection PyProtectedMember
Logger._remove_std_logger()
# unbind everything
PatchHydra.update_current_task(None)
PatchedJoblib.update_current_task(None)
PatchedMatplotlib.update_current_task(None)
PatchAbsl.update_current_task(None)
TensorflowBinding.update_current_task(None)
PatchPyTorchModelIO.update_current_task(None)
PatchMegEngineModelIO.update_current_task(None)
PatchXGBoostModelIO.update_current_task(None)
PatchCatBoostModelIO.update_current_task(None)
PatchFastai.update_current_task(None)
PatchLIGHTgbmModelIO.update_current_task(None)
EnvironmentBind.update_current_task(None)
PatchJsonArgParse.update_current_task(None)
PatchOsFork.patch_fork(None)
def delete(
self,
delete_artifacts_and_models=True,
skip_models_used_by_other_tasks=True,
raise_on_error=False,
callback=None,
):
# type: (bool, bool, bool, Callable[[str, str], bool]) -> bool
"""
Delete the task as well as its output models and artifacts.
Models and artifacts are deleted from their storage locations, each using its URI.
Note: in order to delete models and artifacts using their URI, make sure the proper storage credentials are
configured in your configuration file (e.g. if an artifact is stored in S3, make sure sdk.aws.s3.credentials
are properly configured and that you have delete permission in the related buckets).
:param delete_artifacts_and_models: If True, artifacts and models would also be deleted (default True).
If callback is provided, this argument is ignored.
:param skip_models_used_by_other_tasks: If True, models used by other tasks would not be deleted (default True)
:param raise_on_error: If True, an exception will be raised when encountering an error.
If False an error would be printed and no exception will be raised.
:param callback: An optional callback accepting a uri type (string) and a uri (string) that will be called
for each artifact and model. If provided, the delete_artifacts_and_models is ignored.
Return True to indicate the artifact/model should be deleted or False otherwise.
:return: True if the task was deleted successfully.
"""
if not running_remotely() or not self.is_main_task():
return super(Task, self)._delete(
delete_artifacts_and_models=delete_artifacts_and_models,
skip_models_used_by_other_tasks=skip_models_used_by_other_tasks,
raise_on_error=raise_on_error,
callback=callback,
)
return False
def register_artifact(self, name, artifact, metadata=None, uniqueness_columns=True):
# type: (str, pandas.DataFrame, Dict, Union[bool, Sequence[str]]) -> None
"""
Register (add) an artifact for the current Task. Registered artifacts are dynamically synchronized with the
**ClearML Server** (backend). If a registered artifact is updated, the update is stored in the
**ClearML Server** (backend). Registered artifacts are primarily used for Data Auditing.
The currently supported registered artifact object type is a pandas.DataFrame.
See also :meth:`Task.unregister_artifact` and :meth:`Task.get_registered_artifacts`.
.. note::
ClearML also supports uploaded artifacts which are one-time uploads of static artifacts that are not
dynamically synchronized with the **ClearML Server** (backend). These static artifacts include
additional object types. For more information, see :meth:`Task.upload_artifact`.
:param str name: The name of the artifact.
.. warning::
If an artifact with the same name was previously registered, it is overwritten.
:param object artifact: The artifact object.
:param dict metadata: A dictionary of key-value pairs for any metadata. This dictionary appears with the
experiment in the **ClearML Web-App (UI)**, **ARTIFACTS** tab.
:param uniqueness_columns: A Sequence of columns for artifact uniqueness comparison criteria, or the default
value of ``True``. If ``True``, the artifact uniqueness comparison criteria is all the columns,
which is the same as ``artifact.columns``.
"""
if not isinstance(uniqueness_columns, CollectionsSequence) and uniqueness_columns is not True:
raise ValueError('uniqueness_columns should be a List (sequence) or True')
if isinstance(uniqueness_columns, str):
uniqueness_columns = [uniqueness_columns]
self._artifacts_manager.register_artifact(
name=name, artifact=artifact, metadata=metadata, uniqueness_columns=uniqueness_columns)
def unregister_artifact(self, name):
# type: (str) -> None
"""
Unregister (remove) a registered artifact. This removes the artifact from the watch list that ClearML uses
to synchronize artifacts with the **ClearML Server** (backend).
.. important::
- Calling this method does not remove the artifact from a Task. It only stops ClearML from
monitoring the artifact.
- When this method is called, ClearML immediately takes the last snapshot of the artifact.
"""
self._artifacts_manager.unregister_artifact(name=name)
def get_registered_artifacts(self):
# type: () -> Dict[str, Artifact]
"""
Get a dictionary containing the Task's registered (dynamically synchronized) artifacts (name, artifact object).
.. note::
After calling ``get_registered_artifacts``, you can still modify the registered artifacts.
:return: The registered (dynamically synchronized) artifacts.
"""
return self._artifacts_manager.registered_artifacts
def upload_artifact(
self,
name, # type: str
artifact_object, # type: Union[str, Mapping, pandas.DataFrame, numpy.ndarray, Image.Image, Any]
metadata=None, # type: Optional[Mapping]
delete_after_upload=False, # type: bool
auto_pickle=None, # type: Optional[bool]
preview=None, # type: Any
wait_on_upload=False, # type: bool
extension_name=None, # type: Optional[str]
serialization_function=None, # type: Optional[Callable[[Any], Union[bytes, bytearray]]]
retries=0 # type: int
):
# type: (...) -> bool
"""
Upload (add) a static artifact to a Task object. The artifact is uploaded in the background.
The currently supported upload (static) artifact types include:
- string / pathlib2.Path - A path to artifact file. If a wildcard or a folder is specified, then ClearML
creates and uploads a ZIP file.
- dict - ClearML stores a dictionary as ``.json`` (or see ``extension_name``) file and uploads it.
- pandas.DataFrame - ClearML stores a pandas.DataFrame as ``.csv.gz`` (compressed CSV)
(or see ``extension_name``) file and uploads it.
- numpy.ndarray - ClearML stores a numpy.ndarray as ``.npz`` (or see ``extension_name``) file and uploads it.
- PIL.Image - ClearML stores a PIL.Image as ``.png`` (or see ``extension_name``) file and uploads it.
- Any - If called with auto_pickle=True, the object will be pickled and uploaded.
:param str name: The artifact name.
.. warning::
If an artifact with the same name was previously uploaded, then it is overwritten.
:param object artifact_object: The artifact object.
:param dict metadata: A dictionary of key-value pairs for any metadata. This dictionary appears with the
experiment in the **ClearML Web-App (UI)**, **ARTIFACTS** tab.
:param bool delete_after_upload: After the upload, delete the local copy of the artifact
- ``True`` - Delete the local copy of the artifact.
- ``False`` - Do not delete. (default)
:param bool auto_pickle: If True and the artifact_object is not one of the following types:
pathlib2.Path, dict, pandas.DataFrame, numpy.ndarray, PIL.Image, url (string), local_file (string),
the artifact_object will be pickled and uploaded as pickle file artifact (with file extension .pkl).
If set to None (default) the sdk.development.artifacts.auto_pickle configuration value will be used.
:param Any preview: The artifact preview
:param bool wait_on_upload: Whether the upload should be synchronous, forcing the upload to complete
before continuing.
:param str extension_name: File extension which indicates the format the artifact should be stored as.
The following are supported, depending on the artifact type (default value applies when extension_name is None):
- Any - ``.pkl`` if passed supersedes any other serialization type, and always pickles the object
- dict - ``.json``, ``.yaml`` (default ``.json``)
- pandas.DataFrame - ``.csv.gz``, ``.parquet``, ``.feather``, ``.pickle`` (default ``.csv.gz``)
- numpy.ndarray - ``.npz``, ``.csv.gz`` (default ``.npz``)
- PIL.Image - whatever extensions PIL supports (default ``.png``)
- In case the ``serialization_function`` argument is set - any extension is supported
:param serialization_function: A serialization function that takes one
parameter of any type which is the object to be serialized. The function should return
a `bytes` or `bytearray` object, which represents the serialized object. Note that the object will be
immediately serialized using this function, thus other serialization methods will not be used
(e.g. `pandas.DataFrame.to_csv`), even if possible. To deserialize this artifact when getting
it using the `Artifact.get` method, use its `deserialization_function` argument.
:param int retries: Number of retries before failing to upload artifact. If 0, the upload is not retried
:return: The status of the upload.
- ``True`` - Upload succeeded.
- ``False`` - Upload failed.
:raise: If the artifact object type is not supported, raise a ``ValueError``.
"""
exception_to_raise = None
for retry in range(retries + 1):
# noinspection PyBroadException
try:
if self._artifacts_manager.upload_artifact(
name=name,
artifact_object=artifact_object,
metadata=metadata,
delete_after_upload=delete_after_upload,
auto_pickle=auto_pickle,
preview=preview,
wait_on_upload=wait_on_upload,
extension_name=extension_name,
serialization_function=serialization_function,
):
return True
except Exception as e:
exception_to_raise = e
if retry < retries:
getLogger().warning(
"Failed uploading artifact '{}'. Retrying... ({}/{})".format(name, retry + 1, retries)
)
if exception_to_raise:
raise exception_to_raise
return False
def get_debug_samples(self, title, series, n_last_iterations=None):
# type: (str, str, Optional[int]) -> List[dict]
"""
:param str title: Debug sample's title, also called metric in the UI
:param str series: Debug sample's series,
corresponding to debug sample's file name in the UI, also known as variant
:param int n_last_iterations: How many debug sample iterations to fetch in reverse chronological order.
Leave empty to get all debug samples.
:raise: TypeError if `n_last_iterations` is explicitly set to anything other than a positive integer value
:return: A list of `dict`s, each dictionary containing the debug sample's URL and other metadata.
The URLs can be passed to StorageManager.get_local_copy to fetch local copies of debug samples.
"""
from .config.defs import MAX_SERIES_PER_METRIC
if not n_last_iterations:
n_last_iterations = MAX_SERIES_PER_METRIC.get()
if isinstance(n_last_iterations, int) and n_last_iterations >= 0:
samples = self._get_debug_samples(
title=title, series=series, n_last_iterations=n_last_iterations
)
else:
raise TypeError(
"Parameter n_last_iterations is expected to be a positive integer value,"
" but instead got n_last_iterations={}".format(n_last_iterations)
)
return samples
def _send_debug_image_request(self, title, series, n_last_iterations, scroll_id=None):
return Task._send(
Task._get_default_session(),
events.DebugImagesRequest(
[{"task": self.id, "metric": title, "variants": [series]}],
iters=n_last_iterations,
scroll_id=scroll_id,
),
)
def _get_debug_samples(self, title, series, n_last_iterations=None):
response = self._send_debug_image_request(title, series, n_last_iterations)
debug_samples = []
while True:
scroll_id = response.response_data.get("scroll_id", None)
for metric_resp in response.response_data.get("metrics", []):
iterations_events = [iteration["events"] for iteration in metric_resp.get("iterations", [])] # type: List[List[dict]]
flattened_events = (event
for single_iter_events in iterations_events
for event in single_iter_events)
debug_samples.extend(flattened_events)
response = self._send_debug_image_request(
title, series, n_last_iterations, scroll_id=scroll_id
)
if (len(debug_samples) == n_last_iterations
or all(
len(metric_resp.get("iterations", [])) == 0
for metric_resp in response.response_data.get("metrics", []))):
break
return debug_samples
def get_models(self):
# type: () -> Mapping[str, Sequence[Model]]
"""
Return a dictionary with ``{'input': [], 'output': []}`` loaded/stored models of the current Task
Input models are files loaded in the task, either manually or automatically logged
Output models are files stored in the task, either manually or automatically logged.
Automatically logged frameworks are for example: TensorFlow, Keras, PyTorch, ScikitLearn(joblib) etc.
:return: A dictionary-like object with "input"/"output" keys and input/output properties, pointing to a
list-like object containing Model objects. Each list-like object also acts as a dictionary, mapping
model name to an appropriate model instance.
Example:
.. code-block:: py
{'input': [clearml.Model()], 'output': [clearml.Model()]}
"""
return TaskModels(self)
def is_current_task(self):
# type: () -> bool
"""
.. deprecated:: 0.13.0
This method is deprecated. Use :meth:`Task.is_main_task` instead.
Is this Task object the main execution Task (initially returned by :meth:`Task.init`)
:return: Is this Task object the main execution Task
- ``True`` - Is the main execution Task.
- ``False`` - Is not the main execution Task.
"""
return self.is_main_task()
def is_main_task(self):
# type: () -> bool
"""
Is this Task object the main execution Task (initially returned by :meth:`Task.init`)
.. note::
If :meth:`Task.init` was never called, this method will *not* create
it, making this test more efficient than:
.. code-block:: py
Task.init() == task
:return: Is this Task object the main execution Task
- ``True`` - Is the main execution Task.
- ``False`` - Is not the main execution Task.
"""
return self is self.__main_task
def set_model_config(self, config_text=None, config_dict=None):
# type: (Optional[str], Optional[Mapping]) -> None
"""
.. deprecated:: 0.14.1
Use :meth:`Task.connect_configuration` instead.
"""
self._set_model_config(config_text=config_text, config_dict=config_dict)
def get_model_config_text(self):
# type: () -> str
"""
.. deprecated:: 0.14.1
Use :meth:`Task.connect_configuration` instead.
"""
return self._get_model_config_text()
def get_model_config_dict(self):
# type: () -> Dict
"""
.. deprecated:: 0.14.1
Use :meth:`Task.connect_configuration` instead.
"""
return self._get_model_config_dict()
def set_model_label_enumeration(self, enumeration=None):
# type: (Optional[Mapping[str, int]]) -> ()
"""
Set the label enumeration for the Task object before creating an output model.
Later, when creating an output model, the model will inherit these properties.
:param dict enumeration: A label enumeration dictionary of string (label) to integer (value) pairs.
For example:
.. code-block:: javascript
{
"background": 0,
"person": 1
}
"""
super(Task, self).set_model_label_enumeration(enumeration=enumeration)
def get_last_iteration(self):
# type: () -> int
"""
Get the last reported iteration, which is the last iteration for which the Task reported a metric.
.. note::
The maximum reported iteration is not in the local cache. This method
sends a request to the **ClearML Server** (backend).
:return: The last reported iteration number.
"""
self._reload_last_iteration()
return max(self.data.last_iteration or 0, self.__reporter.max_iteration if self.__reporter else 0)
def set_initial_iteration(self, offset=0):
# type: (int) -> int
"""
Set initial iteration, instead of zero. Useful when continuing training from previous checkpoints
:param int offset: Initial iteration (at starting point)
:return: Newly set initial offset.
"""
return super(Task, self).set_initial_iteration(offset=offset)
def get_initial_iteration(self):
# type: () -> int
"""
Return the initial iteration offset, default is 0
Useful when continuing training from previous checkpoints
:return: Initial iteration offset.
"""
return super(Task, self).get_initial_iteration()
def get_last_scalar_metrics(self):
# type: () -> Dict[str, Dict[str, Dict[str, float]]]
"""
Get the last scalar metrics which the Task reported. This is a nested dictionary, ordered by title and series.
For example:
.. code-block:: javascript
{
"title": {
"series": {
"last": 0.5,
"min": 0.1,
"max": 0.9
}
}
}
:return: The last scalar metrics.
"""
self.reload()
metrics = self.data.last_metrics
scalar_metrics = dict()
for i in metrics.values():
for j in i.values():
scalar_metrics.setdefault(j['metric'], {}).setdefault(
j['variant'], {'last': j['value'], 'min': j['min_value'], 'max': j['max_value']})
return scalar_metrics
def get_parameters_as_dict(self, cast=False):
# type: (bool) -> Dict
"""
Get the Task parameters as a raw nested dictionary.
.. note::
If `cast` is False (default) The values are not parsed. They are returned as is.
:param cast: If True, cast the parameter to the original type. Default False,
values are returned in their string representation
"""
return naive_nested_from_flat_dictionary(self.get_parameters(cast=cast))
def set_parameters_as_dict(self, dictionary):
# type: (Dict) -> None
"""
Set the parameters for the Task object from a dictionary. The dictionary can be nested.
This does not link the dictionary to the Task object. It does a one-time update. This
is the same behavior as the :meth:`Task.connect` method.
"""
self._arguments.copy_from_dict(flatten_dictionary(dictionary))
def get_user_properties(self, value_only=False):
# type: (bool) -> Dict[str, Union[str, dict]]
"""
Get user properties for this task.
Returns a dictionary mapping user property name to user property details dict.
:param value_only: If True, returned user property details will be a string representing the property value.
"""
if not Session.check_min_api_version("2.9"):
self.log.info("User properties are not supported by the server")
return {}
section = "properties"
params = self._hyper_params_manager.get_hyper_params(
sections=[section], projector=(lambda x: x.get("value")) if value_only else None
)
return dict(params.get(section, {}))
def set_user_properties(
self,
*iterables, # type: Union[Mapping[str, Union[str, dict, None]], Iterable[dict]]
**properties # type: Union[str, dict, int, float, None]
):
# type: (...) -> bool
"""
Set user properties for this task.
A user property can contain the following fields (all of type string):
name / value / description / type
Examples:
.. code-block:: py
task.set_user_properties(backbone='great', stable=True)
task.set_user_properties(backbone={"type": int, "description": "network type", "value": "great"}, )
task.set_user_properties(
{"name": "backbone", "description": "network type", "value": "great"},
{"name": "stable", "description": "is stable", "value": True},
)
:param iterables: Properties iterables, each can be:
* A dictionary of string key (name) to either a string value (value) a dict (property details). If the value
is a dict, it must contain a "value" field. For example:
.. code-block:: javascript
{
"property_name": {"description": "This is a user property", "value": "property value"},
"another_property_name": {"description": "This is user property", "value": "another value"},
"yet_another_property_name": "some value"
}
* An iterable of dicts (each representing property details). Each dict must contain a "name" field and a
"value" field. For example:
.. code-block:: javascript
[
{
"name": "property_name",
"description": "This is a user property",
"value": "property value"
},
{
"name": "another_property_name",
"description": "This is another user property",
"value": "another value"
}
]
:param properties: Additional properties keyword arguments. Key is the property name, and value can be
a string (property value) or a dict (property details). If the value is a dict, it must contain a "value"
field. For example:
.. code-block:: javascript
{
"property_name": "string as property value",
"another_property_name": {
"type": "string",
"description": "This is user property",
"value": "another value"
}
}
"""
if not Session.check_min_api_version("2.9"):
self.log.info("User properties are not supported by the server")
return False
return self._hyper_params_manager.edit_hyper_params(
iterables=list(properties.items()) + (
list(iterables.items()) if isinstance(iterables, dict) else list(iterables)),
replace='none',
force_section="properties",
)
def get_script(self):
# type: (...) -> Mapping[str, Optional[str]]
"""
Get task's script details.
Returns a dictionary containing the script details.
:return: Dictionary with script properties e.g.
.. code-block:: javascript
{
'working_dir': 'examples/reporting',
'entry_point': 'artifacts.py',
'branch': 'master',
'repository': 'https://github.com/allegroai/clearml.git'
}
"""
script = self.data.script
return {
"working_dir": script.working_dir,
"entry_point": script.entry_point,
"branch": script.branch,
"repository": script.repository
}
def set_script(
self,
repository=None, # type: Optional[str]
branch=None, # type: Optional[str]
commit=None, # type: Optional[str]
diff=None, # type: Optional[str]
working_dir=None, # type: Optional[str]
entry_point=None, # type: Optional[str]
):
# type: (...) -> None
"""
Set task's script.
Examples:
.. code-block:: py
task.set_script(
repository='https://github.com/allegroai/clearml.git,
branch='main',
working_dir='examples/reporting',
entry_point='artifacts.py'
)
:param repository: Optional, URL of remote repository. use empty string ("") to clear repository entry.
:param branch: Optional, Select specific repository branch / tag. use empty string ("") to clear branch entry.
:param commit: Optional, set specific git commit id. use empty string ("") to clear commit ID entry.
:param diff: Optional, set "git diff" section. use empty string ("") to clear git-diff entry.
:param working_dir: Optional, Working directory to launch the script from.
:param entry_point: Optional, Path to execute within the repository.
"""
self.reload()
script = self.data.script
if repository is not None:
script.repository = str(repository)
if branch is not None:
script.branch = str(branch)
if script.tag:
script.tag = None
if commit is not None:
script.version_num = str(commit)
if diff is not None:
script.diff = str(diff)
if working_dir is not None:
script.working_dir = str(working_dir)
if entry_point is not None:
script.entry_point = str(entry_point)
# noinspection PyProtectedMember
self._update_script(script=script)
def delete_user_properties(self, *iterables):
# type: (Iterable[Union[dict, Iterable[str, str]]]) -> bool
"""
Delete hyperparameters for this task.
:param iterables: Hyperparameter key iterables. Each an iterable whose possible values each represent
a hyperparameter entry to delete, value formats are:
* A dictionary containing a 'section' and 'name' fields
* An iterable (e.g. tuple, list etc.) whose first two items denote 'section' and 'name'
"""
if not Session.check_min_api_version("2.9"):
self.log.info("User properties are not supported by the server")
return False
return self._hyper_params_manager.delete_hyper_params(*iterables)
def set_base_docker(
self,
docker_cmd=None, # type: Optional[str]
docker_image=None, # type: Optional[str]
docker_arguments=None, # type: Optional[Union[str, Sequence[str]]]
docker_setup_bash_script=None # type: Optional[Union[str, Sequence[str]]]
):
# type: (...) -> ()
"""
Set the base docker image for this experiment
If provided, this value will be used by clearml-agent to execute this experiment
inside the provided docker image.
When running remotely the call is ignored
:param docker_cmd: Deprecated! compound docker container image + arguments
(example: 'nvidia/cuda:11.1 -e test=1') Deprecated, use specific arguments.
:param docker_image: docker container image (example: 'nvidia/cuda:11.1')
:param docker_arguments: docker execution parameters (example: '-e ENV=1')
:param docker_setup_bash_script: bash script to run at the
beginning of the docker before launching the Task itself. example: ['apt update', 'apt-get install -y gcc']
"""
if not self.running_locally() and self.is_main_task():
return
super(Task, self).set_base_docker(
docker_cmd=docker_cmd or docker_image,
docker_arguments=docker_arguments,
docker_setup_bash_script=docker_setup_bash_script
)
@classmethod
def set_resource_monitor_iteration_timeout(
cls,
seconds_from_start=30.0,
wait_for_first_iteration_to_start_sec=180.0,
max_wait_for_first_iteration_to_start_sec=1800.0,
):
# type: (float, float, float) -> bool
"""
Set the ResourceMonitor maximum duration (in seconds) to wait until first scalar/plot is reported.
If timeout is reached without any reporting, the ResourceMonitor will start reporting machine statistics based
on seconds from Task start time (instead of based on iteration).
Notice! Should be called before `Task.init`.
:param seconds_from_start: Maximum number of seconds to wait for scalar/plot reporting before defaulting
to machine statistics reporting based on seconds from experiment start time
:param wait_for_first_iteration_to_start_sec: Set the initial time (seconds) to wait for iteration reporting
to be used as x-axis for the resource monitoring, if timeout exceeds then reverts to `seconds_from_start`
:param max_wait_for_first_iteration_to_start_sec: Set the maximum time (seconds) to allow the resource
monitoring to revert back to iteration reporting x-axis after starting to report `seconds_from_start`
:return: True if success
"""
if ResourceMonitor._resource_monitor_instances:
getLogger().warning(
"Task.set_resource_monitor_iteration_timeout called after Task.init."
" This might not work since the values might not be used in forked processes"
)
# noinspection PyProtectedMember
for instance in ResourceMonitor._resource_monitor_instances:
# noinspection PyProtectedMember
instance._first_report_sec = seconds_from_start
instance.wait_for_first_iteration = wait_for_first_iteration_to_start_sec
instance.max_check_first_iteration = max_wait_for_first_iteration_to_start_sec
# noinspection PyProtectedMember
ResourceMonitor._first_report_sec_default = seconds_from_start
# noinspection PyProtectedMember
ResourceMonitor._wait_for_first_iteration_to_start_sec_default = wait_for_first_iteration_to_start_sec
# noinspection PyProtectedMember
ResourceMonitor._max_wait_for_first_iteration_to_start_sec_default = max_wait_for_first_iteration_to_start_sec
return True
def execute_remotely(self, queue_name=None, clone=False, exit_process=True):
# type: (Optional[str], bool, bool) -> Optional[Task]
"""
If task is running locally (i.e., not by ``clearml-agent``), then clone the Task and enqueue it for remote
execution; or, stop the execution of the current Task, reset its state, and enqueue it. If ``exit==True``,
*exit* this process.
.. note::
If the task is running remotely (i.e., ``clearml-agent`` is executing it), this call is a no-op
(i.e., does nothing).
:param queue_name: The queue name used for enqueueing the task. If ``None``, this call exits the process
without enqueuing the task.
:param clone: Clone the Task and execute the newly cloned Task
The values are:
- ``True`` - A cloned copy of the Task will be created, and enqueued, instead of this Task.
- ``False`` - The Task will be enqueued.
:param exit_process: The function call will leave the calling process at the end.
- ``True`` - Exit the process (exit(0)). Note: if ``clone==False``, then ``exit_process`` must be ``True``.
- ``False`` - Do not exit the process.
:return Task: return the task object of the newly generated remotely executing task
"""
# do nothing, we are running remotely
if running_remotely() and self.is_main_task():
return None
if not self.is_main_task():
LoggerRoot.get_base_logger().warning(
"Calling task.execute_remotely is only supported on main Task (created with Task.init)\n"
"Defaulting to self.enqueue(queue_name={})".format(queue_name)
)
if not queue_name:
raise ValueError("queue_name must be provided")
enqueue_task = Task.clone(source_task=self) if clone else self
Task.enqueue(task=enqueue_task, queue_name=queue_name)
return
if not clone and not exit_process:
raise ValueError(
"clone==False and exit_process==False is not supported. "
"Task enqueuing itself must exit the process afterwards.")
# make sure we analyze the process
if self.status in (Task.TaskStatusEnum.in_progress,):
if clone:
# wait for repository detection (5 minutes should be reasonable time to detect all packages)
self.flush(wait_for_uploads=True)
if self._logger and not self.__is_subprocess():
self._wait_for_repo_detection(timeout=300.)
else:
# close ourselves (it will make sure the repo is updated)
self.close()
# clone / reset Task
if clone:
task = Task.clone(self)
else:
task = self
# check if the server supports enqueueing aborted/stopped Tasks
if Session.check_min_api_server_version('2.13'):
self.mark_stopped(force=True)
else:
self.reset()
# enqueue ourselves
if queue_name:
Task.enqueue(task, queue_name=queue_name)
LoggerRoot.get_base_logger().warning(
'Switching to remote execution, output log page {}'.format(task.get_output_log_web_page()))
else:
# Remove the development system tag
system_tags = [t for t in task.get_system_tags() if t != self._development_tag]
self.set_system_tags(system_tags)
# if we leave the Task out there, it makes sense to make it editable.
self.reset(force=True)
# leave this process.
if exit_process:
LoggerRoot.get_base_logger().warning(
'ClearML Terminating local execution process - continuing execution remotely')
leave_process(0)
return task
def create_function_task(self, func, func_name=None, task_name=None, **kwargs):
# type: (Callable, Optional[str], Optional[str], **Optional[Any]) -> Optional[Task]
"""
Create a new task, and call ``func`` with the specified kwargs.
One can think of this call as remote forking, where the newly created instance is the new Task
calling the specified func with the appropriate kwargs and leaving once the func terminates.
Notice that a remote executed function cannot create another child remote executed function.
.. note::
- Must be called from the main Task, i.e. the one created by Task.init(...)
- The remote Tasks inherits the environment from the creating Task
- In the remote Task, the entrypoint is the same as the creating Task
- In the remote Task, the execution is the same until reaching this function call
:param func: A function to execute remotely as a single Task.
On the remote executed Task the entry-point and the environment are copied from this
calling process, only this function call redirect the execution flow to the called func,
alongside the passed arguments
:param func_name: A unique identifier of the function. Default the function name without the namespace.
For example Class.foo() becomes 'foo'
:param task_name: The newly created Task name. Default: the calling Task name + function name
:param kwargs: name specific arguments for the target function.
These arguments will appear under the configuration, "Function" section
:return Task: Return the newly created Task or None if running remotely and execution is skipped
"""
if not self.is_main_task():
raise ValueError("Only the main Task object can call create_function_task()")
if not callable(func):
raise ValueError("func must be callable")
if not Session.check_min_api_version('2.9'):
raise ValueError("Remote function execution is not supported, "
"please upgrade to the latest server version")
func_name = str(func_name or func.__name__).strip()
if func_name in self._remote_functions_generated:
raise ValueError("Function name must be unique, a function by the name '{}' "
"was already created by this Task.".format(func_name))
section_name = 'Function'
tag_name = 'func'
func_marker = '__func_readonly__'
# sanitize the dict, leave only basic types that we might want to override later in the UI
func_params = {k: v for k, v in kwargs.items() if verify_basic_value(v)}
func_params[func_marker] = func_name
# do not query if we are running locally, there is no need.
task_func_marker = self.running_locally() or self.get_parameter('{}/{}'.format(section_name, func_marker))
# if we are running locally or if we are running remotely but we are not a forked tasks
# condition explained:
# (1) running in development mode creates all the forked tasks
# (2) running remotely but this is not one of the forked tasks (i.e. it is missing the fork tag attribute)
if self.running_locally() or not task_func_marker:
self._wait_for_repo_detection(300)
task = self.clone(self, name=task_name or '{} <{}>'.format(self.name, func_name), parent=self.id)
task.set_system_tags((task.get_system_tags() or []) + [tag_name])
task.connect(func_params, name=section_name)
self._remote_functions_generated[func_name] = task.id
return task
# check if we are one of the generated functions and if this is us,
# if we are not the correct function, not do nothing and leave
if task_func_marker != func_name:
self._remote_functions_generated[func_name] = len(self._remote_functions_generated) + 1
return
# mark this is us:
self._remote_functions_generated[func_name] = self.id
# this is us for sure, let's update the arguments and call the function
self.connect(func_params, name=section_name)
func_params.pop(func_marker, None)
kwargs.update(func_params)
func(**kwargs)
# This is it, leave the process
leave_process(0)
def wait_for_status(
self,
status=(_Task.TaskStatusEnum.completed, _Task.TaskStatusEnum.stopped, _Task.TaskStatusEnum.closed),
raise_on_status=(_Task.TaskStatusEnum.failed,),
check_interval_sec=60.,
):
# type: (Iterable[Task.TaskStatusEnum], Optional[Iterable[Task.TaskStatusEnum]], float) -> ()
"""
Wait for a task to reach a defined status.
:param status: Status to wait for. Defaults to ('completed', 'stopped', 'closed', )
:param raise_on_status: Raise RuntimeError if the status of the tasks matches one of these values.
Defaults to ('failed').
:param check_interval_sec: Interval in seconds between two checks. Defaults to 60 seconds.
:raise: RuntimeError if the status is one of ``{raise_on_status}``.
"""
stopped_status = list(status) + (list(raise_on_status) if raise_on_status else [])
while self.status not in stopped_status:
time.sleep(check_interval_sec)
if raise_on_status and self.status in raise_on_status:
raise RuntimeError("Task {} has status: {}.".format(self.task_id, self.status))
# make sure we have the Task object
self.reload()
def export_task(self):
# type: () -> dict
"""
Export Task's configuration into a dictionary (for serialization purposes).
A Task can be copied/modified by calling Task.import_task()
Notice: Export task does not include the tasks outputs, such as results
(scalar/plots etc.) or Task artifacts/models
:return: dictionary of the Task's configuration.
"""
self.reload()
export_data = self.data.to_dict()
export_data.pop('last_metrics', None)
export_data.pop('last_iteration', None)
export_data.pop('status_changed', None)
export_data.pop('status_reason', None)
export_data.pop('status_message', None)
export_data.get('execution', {}).pop('artifacts', None)
export_data.get('execution', {}).pop('model', None)
export_data['project_name'] = self.get_project_name()
export_data['session_api_version'] = self.session.api_version
return export_data
def update_task(self, task_data):
# type: (dict) -> bool
"""
Update current task with configuration found on the task_data dictionary.
See also export_task() for retrieving Task configuration.
:param task_data: dictionary with full Task configuration
:return: return True if Task update was successful
"""
return bool(self.import_task(task_data=task_data, target_task=self, update=True))
def rename(self, new_name):
# type: (str) -> bool
"""
Rename this task
:param new_name: The new name of this task
:return: True if the rename was successful and False otherwise
"""
result = bool(self._edit(name=new_name))
self.reload()
return result
def move_to_project(self, new_project_id=None, new_project_name=None, system_tags=None):
# type: (Optional[str], Optional[str], Optional[Sequence[str]]) -> bool
"""
Move this task to another project
:param new_project_id: The ID of the project the task should be moved to.
Not required if `new_project_name` is passed.
:param new_project_name: Name of the new project the task should be moved to.
Not required if `new_project_id` is passed.
:param system_tags: System tags for the project the task should be moved to.
:return: True if the move was successful and False otherwise
"""
new_project_id = get_or_create_project(
self.session, project_name=new_project_name, project_id=new_project_id, system_tags=system_tags
)
result = bool(self._edit(project=new_project_id))
self.reload()
return result
def register_abort_callback(
self,
callback_function, # type: Optional[Callable]
callback_execution_timeout=30. # type: float
): # type (...) -> None
"""
Register a Task abort callback (single callback function support only).
Pass a function to be called from a background thread when the Task is **externally** being aborted.
Users must specify a timeout for the callback function execution (default 30 seconds)
if the callback execution function exceeds the timeout, the Task's process will be terminated
Call this register function from the main process only.
Note: Ctrl-C is Not considered external, only backend induced abort is covered here
:param callback_function: Callback function to be called via external thread (from the main process).
pass None to remove existing callback
:param callback_execution_timeout: Maximum callback execution time in seconds, after which the process
will be terminated even if the callback did not return
"""
if self.__is_subprocess():
raise ValueError("Register abort callback must be called from the main process, this is a subprocess.")
if callback_function is None:
if self._dev_worker:
self._dev_worker.register_abort_callback(callback_function=None, execution_timeout=0, poll_freq=0)
return
if float(callback_execution_timeout) <= 0:
raise ValueError(
"function_timeout_sec must be positive timeout in seconds, got {}".format(callback_execution_timeout))
# if we are running remotely we might not have a DevWorker monitoring us, so let's create one
if not self._dev_worker:
self._dev_worker = DevWorker()
self._dev_worker.register(self, stop_signal_support=True)
poll_freq = 15.0
self._dev_worker.register_abort_callback(
callback_function=callback_function,
execution_timeout=callback_execution_timeout,
poll_freq=poll_freq
)
@classmethod
def import_task(cls, task_data, target_task=None, update=False):
# type: (dict, Optional[Union[str, Task]], bool) -> Optional[Task]
"""
Import (create) Task from previously exported Task configuration (see Task.export_task)
Can also be used to edit/update an existing Task (by passing `target_task` and `update=True`).
:param task_data: dictionary of a Task's configuration
:param target_task: Import task_data into an existing Task. Can be either task_id (str) or Task object.
:param update: If True, merge task_data with current Task configuration.
:return: return True if Task was imported/updated
"""
# restore original API version (otherwise, we might not be able to restore the data correctly)
force_api_version = task_data.get('session_api_version') or None
original_api_version = Session.api_version
original_force_max_api_version = Session.force_max_api_version
if force_api_version:
Session.force_max_api_version = str(force_api_version)
if not target_task:
project_name = task_data.get('project_name') or Task._get_project_name(task_data.get('project', ''))
target_task = Task.create(project_name=project_name, task_name=task_data.get('name', None))
elif isinstance(target_task, six.string_types):
target_task = Task.get_task(task_id=target_task) # type: Optional[Task]
elif not isinstance(target_task, Task):
raise ValueError(
"`target_task` must be either Task id (str) or Task object, "
"received `target_task` type {}".format(type(target_task)))
target_task.reload()
cur_data = target_task.data.to_dict()
cur_data = merge_dicts(cur_data, task_data) if update else dict(**task_data)
cur_data.pop('id', None)
cur_data.pop('project', None)
# noinspection PyProtectedMember
valid_fields = list(tasks.EditRequest._get_data_props().keys())
cur_data = dict((k, cur_data[k]) for k in valid_fields if k in cur_data)
res = target_task._edit(**cur_data)
if res and res.ok():
target_task.reload()
else:
target_task = None
# restore current api version, and return a new instance if Task with the current version
if force_api_version:
Session.force_max_api_version = original_force_max_api_version
Session.api_version = original_api_version
if target_task:
target_task = Task.get_task(task_id=target_task.id)
return target_task
@classmethod
def set_offline(cls, offline_mode=False):
# type: (bool) -> None
"""
Set offline mode, where all data and logs are stored into local folder, for later transmission
.. note::
`Task.set_offline` can't move the same task from offline to online, nor can it be applied before `Task.create`.
See below an example of **incorrect** usage of `Task.set_offline`:
```
from clearml import Task
Task.set_offline(True)
task = Task.create(project_name='DEBUG', task_name="offline")
# ^^^ an error or warning is raised, saying that Task.set_offline(True)
# is supported only for `Task.init`
Task.set_offline(False)
# ^^^ an error or warning is raised, saying that running Task.set_offline(False)
# while the current task is not closed is not supported
data = task.export_task()
imported_task = Task.import_task(task_data=data)
```
The correct way to use `Task.set_offline` can be seen in the following example:
```
from clearml import Task
Task.set_offline(True)
task = Task.init(project_name='DEBUG', task_name="offline")
task.upload_artifact("large_artifact", "test_string")
task.close()
Task.set_offline(False)
imported_task = Task.import_offline_session(task.get_offline_mode_folder())
```
:param offline_mode: If True, offline-mode is turned on, and no communication to the backend is enabled.
:return:
"""
if running_remotely() or bool(offline_mode) == InterfaceBase._offline_mode:
return
if (
cls.current_task()
and cls.current_task().status != cls.TaskStatusEnum.closed
and not offline_mode
):
raise UsageError(
"Switching from offline mode to online mode, but the current task has not been closed. Use `Task.close` to close it."
)
ENV_OFFLINE_MODE.set(offline_mode)
InterfaceBase._offline_mode = bool(offline_mode)
Session._offline_mode = bool(offline_mode)
if not offline_mode:
# noinspection PyProtectedMember
Session._make_all_sessions_go_online()
@classmethod
def is_offline(cls):
# type: () -> bool
"""
Return offline-mode state, If in offline-mode, no communication to the backend is enabled.
:return: boolean offline-mode state
"""
return cls._offline_mode
@classmethod
def import_offline_session(cls, session_folder_zip, previous_task_id=None, iteration_offset=0):
# type: (str, Optional[str], Optional[int]) -> (Optional[str])
"""
Upload an offline session (execution) of a Task.
Full Task execution includes repository details, installed packages, artifacts, logs, metric and debug samples.
This function may also be used to continue a previously executed task with a task executed offline.
:param session_folder_zip: Path to a folder containing the session, or zip-file of the session folder.
:param previous_task_id: Task ID of the task you wish to continue with this offline session.
:param iteration_offset: Reporting of the offline session will be offset with the
number specified by this parameter. Useful for avoiding overwriting metrics.
:return: Newly created task ID or the ID of the continued task (previous_task_id)
"""
print('ClearML: Importing offline session from {}'.format(session_folder_zip))
temp_folder = None
if Path(session_folder_zip).is_file():
# unzip the file:
temp_folder = mkdtemp(prefix='clearml-offline-')
ZipFile(session_folder_zip).extractall(path=temp_folder)
session_folder_zip = temp_folder
session_folder = Path(session_folder_zip)
if not session_folder.is_dir():
raise ValueError("Could not find the session folder / zip-file {}".format(session_folder))
try:
with open((session_folder / cls._offline_filename).as_posix(), 'rt') as f:
export_data = json.load(f)
except Exception as ex:
raise ValueError(
"Could not read Task object {}: Exception {}".format(session_folder / cls._offline_filename, ex))
current_task = cls.import_task(export_data)
if previous_task_id:
task_holding_reports = cls.get_task(task_id=previous_task_id)
task_holding_reports.mark_started(force=True)
task_holding_reports = cls.import_task(export_data, target_task=task_holding_reports, update=True)
else:
task_holding_reports = current_task
task_holding_reports.mark_started(force=True)
# fix artifacts
if current_task.data.execution.artifacts:
from . import StorageManager
# noinspection PyProtectedMember
offline_folder = os.path.join(export_data.get('offline_folder', ''), 'data/')
# noinspection PyProtectedMember
remote_url = current_task._get_default_report_storage_uri()
if remote_url and remote_url.endswith('/'):
remote_url = remote_url[:-1]
for artifact in current_task.data.execution.artifacts:
local_path = artifact.uri.replace(offline_folder, '', 1)
local_file = session_folder / 'data' / local_path
if local_file.is_file():
remote_path = local_path.replace(
'.{}{}'.format(export_data['id'], os.sep), '.{}{}'.format(current_task.id, os.sep), 1)
artifact.uri = '{}/{}'.format(remote_url, remote_path)
StorageManager.upload_file(local_file=local_file.as_posix(), remote_url=artifact.uri)
# noinspection PyProtectedMember
task_holding_reports._edit(execution=current_task.data.execution)
for output_model in export_data.get("offline_output_models", []):
model = OutputModel(task=current_task, **output_model["init"])
if output_model.get("output_uri"):
model.set_upload_destination(output_model.get("output_uri"))
model.update_weights(auto_delete_file=False, **output_model["weights"])
Metrics.report_offline_session(
model,
session_folder,
iteration_offset=iteration_offset,
remote_url=task_holding_reports._get_default_report_storage_uri(),
only_with_id=output_model["id"],
session=task_holding_reports.session
)
# logs
TaskHandler.report_offline_session(task_holding_reports, session_folder, iteration_offset=iteration_offset)
# metrics
Metrics.report_offline_session(
task_holding_reports,
session_folder,
iteration_offset=iteration_offset,
only_with_id=export_data["id"],
session=task_holding_reports.session,
)
# print imported results page
print('ClearML results page: {}'.format(task_holding_reports.get_output_log_web_page()))
task_holding_reports.mark_completed()
# close task
task_holding_reports.close()
# cleanup
if temp_folder:
# noinspection PyBroadException
try:
shutil.rmtree(temp_folder)
except Exception:
pass
return task_holding_reports.id
@classmethod
def set_credentials(
cls,
api_host=None,
web_host=None,
files_host=None,
key=None,
secret=None,
store_conf_file=False
):
# type: (Optional[str], Optional[str], Optional[str], Optional[str], Optional[str], bool) -> None
"""
Set new default **ClearML Server** (backend) host and credentials.
These credentials will be overridden by either OS environment variables, or the ClearML configuration
file, ``clearml.conf``.
.. warning::
Credentials must be set before initializing a Task object.
For example, to set credentials for a remote computer:
.. code-block:: py
Task.set_credentials(
api_host='http://localhost:8008', web_host='http://localhost:8080', files_host='http://localhost:8081',
key='optional_credentials', secret='optional_credentials'
)
task = Task.init('project name', 'experiment name')
:param str api_host: The API server url. For example, ``host='http://localhost:8008'``
:param str web_host: The Web server url. For example, ``host='http://localhost:8080'``
:param str files_host: The file server url. For example, ``host='http://localhost:8081'``
:param str key: The user key (in the key/secret pair). For example, ``key='thisisakey123'``
:param str secret: The user secret (in the key/secret pair). For example, ``secret='thisisseceret123'``
:param bool store_conf_file: If True, store the current configuration into the ~/clearml.conf file.
If the configuration file exists, no change will be made (outputs a warning).
Not applicable when running remotely (i.e. clearml-agent).
"""
if api_host:
Session.default_host = api_host
if not running_remotely() and not ENV_HOST.get():
ENV_HOST.set(api_host)
if web_host:
Session.default_web = web_host
if not running_remotely() and not ENV_WEB_HOST.get():
ENV_WEB_HOST.set(web_host)
if files_host:
Session.default_files = files_host
if not running_remotely() and not ENV_FILES_HOST.get():
ENV_FILES_HOST.set(files_host)
if key:
Session.default_key = key
if not running_remotely():
ENV_ACCESS_KEY.set(key)
if secret:
Session.default_secret = secret
if not running_remotely():
ENV_SECRET_KEY.set(secret)
if store_conf_file and not running_remotely():
active_conf_file = get_active_config_file()
if active_conf_file:
getLogger().warning(
'Could not store credentials in configuration file, '
'\'{}\' already exists'.format(active_conf_file))
else:
conf = {'api': dict(
api_server=Session.default_host,
web_server=Session.default_web,
files_server=Session.default_files,
credentials=dict(access_key=Session.default_key, secret_key=Session.default_secret))}
with open(get_config_file(), 'wt') as f:
lines = json.dumps(conf, indent=4).split('\n')
f.write('\n'.join(lines[1:-1]))
@classmethod
def debug_simulate_remote_task(cls, task_id, reset_task=False):
# type: (str, bool) -> ()
"""
Simulate remote execution of a specified Task.
This call will simulate the behaviour of your Task as if executed by the ClearML-Agent
This means configurations will be coming from the backend server into the code
(the opposite from manual execution, where the backend logs the code arguments)
Use with care.
:param task_id: Task ID to simulate, notice that all configuration will be taken from the specified
Task, regardless of the code initial values, just like it as if executed by ClearML agent
:param reset_task: If True, target Task, is automatically cleared / reset.
"""
# if we are already running remotely, do nothing
if running_remotely():
return
# verify Task ID exists
task = Task.get_task(task_id=task_id)
if not task:
raise ValueError("Task ID '{}' could not be found".format(task_id))
if reset_task:
task.reset(set_started_on_success=False, force=True)
from .config.remote import override_current_task_id
from .config.defs import LOG_TO_BACKEND_ENV_VAR
override_current_task_id(task_id)
LOG_TO_BACKEND_ENV_VAR.set(True)
DEBUG_SIMULATE_REMOTE_TASK.set(True)
def get_executed_queue(self, return_name=False):
# type: (bool) -> Optional[str]
"""
Get the queue the task was executed on.
:param return_name: If True, return the name of the queue. Otherwise, return its ID
:return: Return the ID or name of the queue the task was executed on.
If no queue was found, return None
"""
queue_id = self.data.execution.queue
if not return_name or not queue_id:
return queue_id
try:
queue_name_result = Task._send(
Task._get_default_session(),
queues.GetByIdRequest(queue_id)
)
return queue_name_result.response.queue.name
except Exception as e:
getLogger().warning("Could not get name of queue with ID '{}': {}".format(queue_id, e))
return None
@classmethod
def _create(cls, project_name=None, task_name=None, task_type=TaskTypes.training):
# type: (Optional[str], Optional[str], Task.TaskTypes) -> TaskInstance
"""
Create a new unpopulated Task (experiment).
:param str project_name: The name of the project in which the experiment will be created.
If ``project_name`` is ``None``, and the main execution Task is initialized (see :meth:`Task.init`),
then the main execution Task's project is used. Otherwise, if the project does
not exist, it is created. (Optional)
:param str task_name: The name of Task (experiment).
:param TaskTypes task_type: The task type.
:return: The newly created task created.
:rtype: Task
"""
if not project_name:
if not cls.__main_task:
raise ValueError("Please provide project_name, no global task context found "
"(Task.current_task hasn't been called)")
project_name = cls.__main_task.get_project_name()
try:
task = cls(
private=cls.__create_protection,
project_name=project_name,
task_name=task_name,
task_type=task_type,
log_to_backend=False,
force_create=True,
)
except Exception:
raise
return task
def _set_model_config(self, config_text=None, config_dict=None):
# type: (Optional[str], Optional[Mapping]) -> None
"""
Set Task model configuration text/dict
:param config_text: model configuration (unconstrained text string). usually the content
of a configuration file. If `config_text` is not None, `config_dict` must not be provided.
:param config_dict: model configuration parameters dictionary.
If `config_dict` is not None, `config_text` must not be provided.
"""
# noinspection PyProtectedMember
design = OutputModel._resolve_config(config_text=config_text, config_dict=config_dict)
super(Task, self)._set_model_design(design=design)
def _get_model_config_text(self):
# type: () -> str
"""
Get Task model configuration text (before creating an output model)
When an output model is created it will inherit these properties
:return: The model config_text (unconstrained text string).
"""
return super(Task, self).get_model_design()
def _get_model_config_dict(self):
# type: () -> Dict
"""
Get Task model configuration dictionary (before creating an output model)
When an output model is created it will inherit these properties
:return: config_dict: model configuration parameters dictionary.
"""
config_text = self._get_model_config_text()
# noinspection PyProtectedMember
return OutputModel._text_to_config_dict(config_text)
def _set_startup_info(self):
# type: () -> ()
self._set_runtime_properties(
runtime_properties={"CLEARML VERSION": self.session.client, "CLI": sys.argv[0], "progress": "0"}
)
@classmethod
def _reset_current_task_obj(cls):
if not cls.__main_task:
return
task = cls.__main_task
cls.__main_task = None
cls.__forked_proc_main_pid = None
if task._dev_worker:
task._dev_worker.unregister()
task._dev_worker = None
@classmethod
def _has_current_task_obj(cls):
# type: () -> bool
return bool(cls.__main_task)
@classmethod
def _create_dev_task(
cls, default_project_name, default_task_name, default_task_type, tags,
reuse_last_task_id, continue_last_task=False, detect_repo=True, auto_connect_streams=True
):
if not default_project_name or not default_task_name:
# get project name and task name from repository name and entry_point
result, _ = ScriptInfo.get(create_requirements=False, check_uncommitted=False)
if not default_project_name:
# noinspection PyBroadException
try:
parts = result.script['repository'].split('/')
default_project_name = (parts[-1] or parts[-2]).replace('.git', '') or 'Untitled'
except Exception:
default_project_name = 'Untitled'
if not default_task_name:
# noinspection PyBroadException
try:
default_task_name = os.path.splitext(os.path.basename(result.script['entry_point']))[0]
except Exception:
pass
# conform reuse_last_task_id and continue_last_task
if continue_last_task and isinstance(continue_last_task, str):
reuse_last_task_id = continue_last_task
continue_last_task = True
elif isinstance(continue_last_task, int) and continue_last_task is not True:
# allow initial offset environment override
continue_last_task = continue_last_task
if TASK_SET_ITERATION_OFFSET.get() is not None:
continue_last_task = TASK_SET_ITERATION_OFFSET.get()
# if we force no task reuse from os environment
if DEV_TASK_NO_REUSE.get() or not reuse_last_task_id or isinstance(reuse_last_task_id, str):
default_task = None
else:
# if we have a previous session to use, get the task id from it
default_task = cls.__get_last_used_task_id(
default_project_name,
default_task_name,
default_task_type.value,
)
closed_old_task = False
default_task_id = None
task = None
in_dev_mode = not running_remotely()
if in_dev_mode:
if isinstance(reuse_last_task_id, str) and reuse_last_task_id:
default_task_id = reuse_last_task_id
elif not reuse_last_task_id or not cls.__task_is_relevant(default_task):
default_task_id = None
else:
default_task_id = default_task.get('id') if default_task else None
if default_task_id:
try:
task = cls(
private=cls.__create_protection,
task_id=default_task_id,
log_to_backend=True,
)
# instead of resting the previously used task we are continuing the training with it.
if task and \
(continue_last_task or
(isinstance(continue_last_task, int) and not isinstance(continue_last_task, bool))):
task.reload()
task.mark_started(force=True)
# allow to disable the
if continue_last_task is True:
task.set_initial_iteration(task.get_last_iteration() + 1)
else:
task.set_initial_iteration(continue_last_task)
else:
task_tags = task.data.system_tags if hasattr(task.data, 'system_tags') else task.data.tags
task_artifacts = task.data.execution.artifacts \
if hasattr(task.data.execution, 'artifacts') else None
if ((task._status in (
cls.TaskStatusEnum.published, cls.TaskStatusEnum.closed))
or task.output_models_id or (cls.archived_tag in task_tags)
or (cls._development_tag not in task_tags)
or task_artifacts):
# If the task is published or closed, we shouldn't reset it so we can't use it in dev mode
# If the task is archived, or already has an output model,
# we shouldn't use it in development mode either
default_task_id = None
task = None
else:
with task._edit_lock:
# from now on, there is no need to reload, we just clear stuff,
# this flag will be cleared off once we actually refresh at the end of the function
task._reload_skip_flag = True
# reset the task, so we can update it
task.reset(set_started_on_success=False, force=False)
# clear the heaviest stuff first
task._clear_task(
system_tags=[cls._development_tag],
comment=make_message('Auto-generated at %(time)s by %(user)s@%(host)s'))
except (Exception, ValueError):
# we failed reusing task, create a new one
default_task_id = None
# create a new task
if not default_task_id:
task = cls(
private=cls.__create_protection,
project_name=default_project_name,
task_name=default_task_name,
task_type=default_task_type,
log_to_backend=True,
)
# no need to reload yet, we clear this before the end of the function
task._reload_skip_flag = True
if in_dev_mode:
# update this session, for later use
cls.__update_last_used_task_id(default_project_name, default_task_name, default_task_type.value, task.id)
# set default docker image from env.
task._set_default_docker_image()
# mark us as the main Task, there should only be one dev Task at a time.
if not Task.__main_task:
Task.__forked_proc_main_pid = os.getpid()
Task.__main_task = task
# mark the task as started
task.started()
# reload, making sure we are synced
task._reload_skip_flag = False
task.reload()
# add Task tags
if tags:
task.add_tags([tags] if isinstance(tags, str) else tags)
# force update of base logger to this current task (this is the main logger task)
logger = task._get_logger(auto_connect_streams=auto_connect_streams)
if closed_old_task:
logger.report_text('ClearML Task: Closing old development task id={}'.format(default_task.get('id')))
# print warning, reusing/creating a task
if default_task_id and not continue_last_task:
logger.report_text('ClearML Task: overwriting (reusing) task id=%s' % task.id)
elif default_task_id and continue_last_task:
logger.report_text('ClearML Task: continuing previous task id=%s '
'Notice this run will not be reproducible!' % task.id)
else:
logger.report_text('ClearML Task: created new task id=%s' % task.id)
# update current repository and put warning into logs
if detect_repo:
# noinspection PyBroadException
try:
import traceback
stack = traceback.extract_stack(limit=10)
# NOTICE WE ARE ALWAYS 3 down from caller in stack!
for i in range(len(stack) - 1, 0, -1):
# look for the Task.init call, then the one above it is the callee module
if stack[i].name == 'init':
task._calling_filename = os.path.abspath(stack[i - 1].filename)
break
except Exception:
pass
if in_dev_mode and cls.__detect_repo_async:
task._detect_repo_async_thread = threading.Thread(target=task._update_repository)
task._detect_repo_async_thread.daemon = True
task._detect_repo_async_thread.start()
else:
task._update_repository()
# make sure we see something in the UI
thread = threading.Thread(target=LoggerRoot.flush)
thread.daemon = True
thread.start()
return task
def _get_logger(self, flush_period=NotSet, auto_connect_streams=False):
# type: (Optional[float], Union[bool, dict]) -> Logger
"""
get a logger object for reporting based on the task
:param flush_period: The period of the logger flush.
If None of any other False value, will not flush periodically.
If a logger was created before, this will be the new period and
the old one will be discarded.
:return: Logger object
"""
if not self._logger:
# do not recreate logger after task was closed/quit
if self._at_exit_called and self._at_exit_called in (True, get_current_thread_id(),):
raise ValueError("Cannot use Task Logger after task was closed")
# Get a logger object
self._logger = Logger(
private_task=self,
connect_stdout=(auto_connect_streams is True) or
(isinstance(auto_connect_streams, dict) and auto_connect_streams.get('stdout', False)),
connect_stderr=(auto_connect_streams is True) or
(isinstance(auto_connect_streams, dict) and auto_connect_streams.get('stderr', False)),
connect_logging=isinstance(auto_connect_streams, dict) and auto_connect_streams.get('logging', False),
)
# make sure we set our reported to async mode
# we make sure we flush it in self._at_exit
self._reporter.async_enable = True
# if we just created the logger, set default flush period
if not flush_period or flush_period is self.NotSet:
flush_period = float(DevWorker.report_period)
if isinstance(flush_period, (int, float)):
flush_period = int(abs(flush_period))
if flush_period is None or isinstance(flush_period, int):
self._logger.set_flush_period(flush_period)
return self._logger
def _connect_output_model(self, model, name=None, **kwargs):
assert isinstance(model, OutputModel)
model.connect(self, name=name, ignore_remote_overrides=False)
return model
def _save_output_model(self, model):
"""
Deprecated: Save a reference to the connected output model.
:param model: The connected output model
"""
# deprecated
self._connected_output_model = model
def _handle_ignore_remote_overrides(self, overrides_name, ignore_remote_overrides):
if self.running_locally() and ignore_remote_overrides:
self.set_parameter(
overrides_name,
True,
description="If True, ignore UI/backend overrides when running remotely."
" Set it to False if you would like the overrides to be applied",
value_type=bool
)
elif not self.running_locally():
ignore_remote_overrides = self.get_parameter(overrides_name, default=ignore_remote_overrides, cast=True)
return ignore_remote_overrides
def _reconnect_output_model(self):
"""
Deprecated: If there is a saved connected output model, connect it again.
This is needed if the input model is connected after the output model
is connected, an then we will have to get the model design from the
input model by reconnecting.
"""
# Deprecated:
if self._connected_output_model:
self.connect(self._connected_output_model)
def _connect_input_model(self, model, name=None, ignore_remote_overrides=False):
assert isinstance(model, InputModel)
# we only allow for an input model to be connected once
# at least until we support multiple input models
# notice that we do not check the task's input model because we allow task reuse and overwrite
# add into comment that we are using this model
# refresh comment
comment = self._reload_field("comment") or self.comment or ''
if not comment.endswith('\n'):
comment += '\n'
comment += 'Using model id: {}'.format(model.id)
self.set_comment(comment)
model.connect(self, name, ignore_remote_overrides=ignore_remote_overrides)
return model
def _connect_argparse(
self, parser, args=None, namespace=None, parsed_args=None, name=None, ignore_remote_overrides=False
):
# do not allow argparser to connect to jupyter notebook
# noinspection PyBroadException
try:
if "IPython" in sys.modules:
# noinspection PyPackageRequirements
from IPython import get_ipython # noqa
ip = get_ipython()
if ip is not None and "IPKernelApp" in ip.config:
return parser
except Exception:
pass
if self.is_main_task():
argparser_update_currenttask(self)
if (parser is None or parsed_args is None) and argparser_parseargs_called():
# if we have a parser but nor parsed_args, we need to find the parser
if parser and not parsed_args:
for _parser, _parsed_args in get_argparser_last_args():
if _parser == parser:
parsed_args = _parsed_args
break
else:
# prefer the first argparser (hopefully it is more relevant?!
for _parser, _parsed_args in get_argparser_last_args():
if parser is None:
parser = _parser
if parsed_args is None and parser == _parser:
parsed_args = _parsed_args
if running_remotely() and (self.is_main_task() or self._is_remote_main_task()) and not ignore_remote_overrides:
self._arguments.copy_to_parser(parser, parsed_args)
else:
self._arguments.copy_defaults_from_argparse(
parser, args=args, namespace=namespace, parsed_args=parsed_args)
return parser
def _connect_dictionary(self, dictionary, name=None, ignore_remote_overrides=False):
def _update_args_dict(task, config_dict):
# noinspection PyProtectedMember
task._arguments.copy_from_dict(flatten_dictionary(config_dict), prefix=name)
def _refresh_args_dict(task, config_proxy_dict):
# reread from task including newly added keys
# noinspection PyProtectedMember
a_flat_dict = task._arguments.copy_to_dict(flatten_dictionary(config_proxy_dict), prefix=name)
# noinspection PyProtectedMember
nested_dict = config_proxy_dict._to_dict()
config_proxy_dict.clear()
config_proxy_dict._do_update(nested_from_flat_dictionary(nested_dict, a_flat_dict))
def _check_keys(dict_, warning_sent=False):
if warning_sent:
return
for k, v in dict_.items():
if warning_sent:
return
if not isinstance(k, str):
getLogger().warning(
"Unsupported key of type '{}' found when connecting dictionary. It will be converted to str".format(
type(k)
)
)
warning_sent = True
if isinstance(v, dict):
_check_keys(v, warning_sent)
if not running_remotely() or not (self.is_main_task() or self._is_remote_main_task()) or ignore_remote_overrides:
_check_keys(dictionary)
flat_dict = {str(k): v for k, v in flatten_dictionary(dictionary).items()}
self._arguments.copy_from_dict(flat_dict, prefix=name)
dictionary = ProxyDictPostWrite(self, _update_args_dict, **dictionary)
else:
flat_dict = flatten_dictionary(dictionary)
flat_dict = self._arguments.copy_to_dict(flat_dict, prefix=name)
dictionary = nested_from_flat_dictionary(dictionary, flat_dict)
dictionary = ProxyDictPostWrite(self, _refresh_args_dict, **dictionary)
return dictionary
def _connect_task_parameters(self, attr_class, name=None, ignore_remote_overrides=False):
ignore_remote_overrides_section = "_ignore_remote_overrides_"
if running_remotely():
ignore_remote_overrides = self.get_parameter(
(name or "General") + "/" + ignore_remote_overrides_section, default=ignore_remote_overrides, cast=True
)
if running_remotely() and (self.is_main_task() or self._is_remote_main_task()) and not ignore_remote_overrides:
parameters = self.get_parameters(cast=True)
if name:
parameters = dict(
(k[len(name) + 1:], v) for k, v in parameters.items() if k.startswith("{}/".format(name))
)
parameters.pop(ignore_remote_overrides_section, None)
attr_class.update_from_dict(parameters)
else:
parameters_dict = attr_class.to_dict()
if ignore_remote_overrides:
parameters_dict[ignore_remote_overrides_section] = True
self.set_parameters(parameters_dict, __parameters_prefix=name)
return attr_class
def _connect_object(self, an_object, name=None, ignore_remote_overrides=False):
def verify_type(key, value):
if str(key).startswith('_') or not isinstance(value, self._parameters_allowed_types):
return False
# verify everything is json able (i.e. basic types)
try:
json.dumps(value)
return True
except TypeError:
return False
a_dict = {
k: v
for cls_ in getattr(an_object, "__mro__", [an_object])
for k, v in cls_.__dict__.items()
if verify_type(k, v)
}
if running_remotely() and (self.is_main_task() or self._is_remote_main_task()) and not ignore_remote_overrides:
a_dict = self._connect_dictionary(a_dict, name, ignore_remote_overrides=ignore_remote_overrides)
for k, v in a_dict.items():
if getattr(an_object, k, None) != a_dict[k]:
setattr(an_object, k, v)
return an_object
else:
self._connect_dictionary(a_dict, name, ignore_remote_overrides=ignore_remote_overrides)
return an_object
def _dev_mode_stop_task(self, stop_reason, pid=None):
# make sure we do not get called (by a daemon thread) after at_exit
if self._at_exit_called:
return
self.log.warning(
"### TASK STOPPED - USER ABORTED - {} ###".format(
stop_reason.upper().replace('_', ' ')
)
)
self.flush(wait_for_uploads=True)
# if running remotely, we want the daemon to kill us
if self.running_locally():
self.stopped(status_reason='USER ABORTED')
if self._dev_worker:
self._dev_worker.unregister()
# NOTICE! This will end the entire execution tree!
if self.__exit_hook:
self.__exit_hook.remote_user_aborted = True
self._kill_all_child_processes(send_kill=False, pid=pid, allow_kill_calling_pid=False)
time.sleep(2.0)
self._kill_all_child_processes(send_kill=True, pid=pid, allow_kill_calling_pid=True)
os._exit(1) # noqa
@staticmethod
def _kill_all_child_processes(send_kill=False, pid=None, allow_kill_calling_pid=True):
# get current process if pid not provided
current_pid = os.getpid()
kill_ourselves = None
pid = pid or current_pid
try:
parent = psutil.Process(pid)
except psutil.Error:
# could not find parent process id
return
for child in parent.children(recursive=True):
# kill ourselves last (if we need to)
if child.pid == current_pid:
kill_ourselves = child
continue
if send_kill:
child.kill()
else:
child.terminate()
# parent ourselves
if allow_kill_calling_pid or parent.pid != current_pid:
if send_kill:
parent.kill()
else:
parent.terminate()
# kill ourselves if we need to:
if allow_kill_calling_pid and kill_ourselves:
if send_kill:
kill_ourselves.kill()
else:
kill_ourselves.terminate()
def _dev_mode_setup_worker(self):
if (running_remotely() and not DEBUG_SIMULATE_REMOTE_TASK.get()) \
or not self.is_main_task() or self._at_exit_called or self._offline_mode:
return
if self._dev_worker:
return self._dev_worker
self._dev_worker = DevWorker()
self._dev_worker.register(self)
logger = self.get_logger()
flush_period = logger.get_flush_period()
if not flush_period or flush_period > self._dev_worker.report_period:
logger.set_flush_period(self._dev_worker.report_period)
def _wait_for_repo_detection(self, timeout=None):
# wait for detection repo sync
if not self._detect_repo_async_thread:
return
with self._repo_detect_lock:
if not self._detect_repo_async_thread:
return
# noinspection PyBroadException
try:
if self._detect_repo_async_thread.is_alive():
# if negative timeout, just kill the thread:
if timeout is not None and timeout < 0:
from .utilities.lowlevel.threads import kill_thread
kill_thread(self._detect_repo_async_thread)
else:
self.log.info('Waiting for repository detection and full package requirement analysis')
self._detect_repo_async_thread.join(timeout=timeout)
# because join has no return value
if self._detect_repo_async_thread.is_alive():
self.log.info('Repository and package analysis timed out ({} sec), '
'giving up'.format(timeout))
# done waiting, kill the thread
from .utilities.lowlevel.threads import kill_thread
kill_thread(self._detect_repo_async_thread)
else:
self.log.info('Finished repository detection and package analysis')
self._detect_repo_async_thread = None
except Exception:
pass
def _summary_artifacts(self):
# signal artifacts upload, and stop daemon
self._artifacts_manager.stop(wait=True)
# print artifacts summary (if not empty)
if self._artifacts_manager.summary:
self.get_logger().report_text(self._artifacts_manager.summary)
def _at_exit(self):
# protect sub-process at_exit (should never happen)
if self._at_exit_called and self._at_exit_called != get_current_thread_id():
return
# make sure we do not try to use events, because Python might deadlock itself.
# https://bugs.python.org/issue41606
if self.__is_subprocess():
BackgroundMonitor.set_at_exit_state(True)
# shutdown will clear the main, so we have to store it before.
# is_main = self.is_main_task()
# fix debugger signal in the middle, catch everything
try:
self.__shutdown()
except: # noqa
pass
# In rare cases we might need to forcefully shutdown the process, currently we should avoid it.
# if is_main:
# # we have to forcefully shutdown if we have forked processes, sometimes they will get stuck
# os._exit(self.__exit_hook.exit_code if self.__exit_hook and self.__exit_hook.exit_code else 0)
def __shutdown(self):
"""
Will happen automatically once we exit code, i.e. atexit
:return:
"""
# protect sub-process at_exit
if self._at_exit_called:
is_sub_process = self.__is_subprocess()
# if we are called twice (signal in the middle of the shutdown),
_nested_shutdown_call = bool(self._at_exit_called == get_current_thread_id())
if _nested_shutdown_call and not is_sub_process:
# if we were called again in the main thread on the main process, let's try again
# make sure we only do this once
self._at_exit_called = True
else:
# make sure we flush stdout, this is the best we can do.
if _nested_shutdown_call and self._logger and is_sub_process:
# noinspection PyProtectedMember
self._logger._close_stdout_handler(wait=True)
self._at_exit_called = True
# if we get here, we should do nothing and leave
return
else:
# from here only a single thread can re-enter
self._at_exit_called = get_current_thread_id()
LoggerRoot.clear_logger_handlers()
# disable lock on signal callbacks, to avoid deadlocks.
if self.__exit_hook and self.__exit_hook.signal is not None:
self.__edit_lock = False
is_sub_process = self.__is_subprocess()
task_status = None
# noinspection PyBroadException
try:
wait_for_uploads = True
# first thing mark task as stopped, so we will not end up with "running" on lost tasks
# if we are running remotely, the daemon will take care of it
wait_for_std_log = True
if (not running_remotely() or DEBUG_SIMULATE_REMOTE_TASK.get()) \
and self.is_main_task() and not is_sub_process:
# check if we crashed, ot the signal is not interrupt (manual break)
task_status = ('stopped',)
if self.__exit_hook:
is_exception = self.__exit_hook.exception
# check if we are running inside a debugger
if not is_exception and sys.modules.get('pydevd'):
# noinspection PyBroadException
try:
is_exception = sys.last_type
except Exception:
pass
# check if this is Jupyter interactive session, do not mark as exception
if 'IPython' in sys.modules:
is_exception = None
# only if we have an exception (and not ctrl-break) or signal is not SIGTERM / SIGINT
if (is_exception and not isinstance(is_exception, KeyboardInterrupt)
and is_exception != KeyboardInterrupt) \
or (not self.__exit_hook.remote_user_aborted and
(self.__exit_hook.signal not in (None, 2, 15) or self.__exit_hook.exit_code)):
task_status = (
'failed',
'Exception {}'.format(is_exception) if is_exception else
'Signal {}'.format(self.__exit_hook.signal))
wait_for_uploads = False
else:
wait_for_uploads = (self.__exit_hook.remote_user_aborted or self.__exit_hook.signal is None)
if not self.__exit_hook.remote_user_aborted and self.__exit_hook.signal is None and \
not is_exception:
task_status = ('completed',)
else:
task_status = ('stopped',)
# user aborted. do not bother flushing the stdout logs
wait_for_std_log = self.__exit_hook.signal is not None
# wait for repository detection (if we didn't crash)
if wait_for_uploads and self._logger:
# we should print summary here
self._summary_artifacts()
# make sure that if we crashed the thread we are not waiting forever
if not is_sub_process:
self._wait_for_repo_detection(timeout=10.)
# kill the repo thread (negative timeout, do not wait), if it hasn't finished yet.
if not is_sub_process:
self._wait_for_repo_detection(timeout=-1)
# wait for uploads
print_done_waiting = False
if wait_for_uploads and (BackendModel.get_num_results() > 0 or
(self.__reporter and self.__reporter.events_waiting())):
self.log.info('Waiting to finish uploads')
print_done_waiting = True
# from here, do not send log in background thread
if wait_for_uploads:
self.flush(wait_for_uploads=True)
# wait until the reporter flush everything
if self.__reporter:
self.__reporter.stop()
if self.is_main_task():
# notice: this will close the reporting for all the Tasks in the system
Metrics.close_async_threads()
# notice: this will close the jupyter monitoring
ScriptInfo.close()
if self.is_main_task():
# noinspection PyBroadException
try:
from .storage.helper import StorageHelper
StorageHelper.close_async_threads()
except Exception:
pass
if print_done_waiting:
self.log.info('Finished uploading')
# elif self._logger:
# # noinspection PyProtectedMember
# self._logger._flush_stdout_handler()
# from here, do not check worker status
if self._dev_worker:
self._dev_worker.unregister()
self._dev_worker = None
# stop resource monitoring
if self._resource_monitor:
self._resource_monitor.stop()
self._resource_monitor = None
if self._logger:
self._logger.set_flush_period(None)
# noinspection PyProtectedMember
self._logger._close_stdout_handler(wait=wait_for_uploads or wait_for_std_log)
if not is_sub_process:
# change task status
if not task_status:
pass
elif task_status[0] == 'failed':
self.mark_failed(status_reason=task_status[1])
elif task_status[0] == 'completed':
self.set_progress(100)
self.mark_completed()
elif task_status[0] == 'stopped':
self.stopped()
# this is so in theory we can close a main task and start a new one
if self.is_main_task():
Task.__main_task = None
Task.__forked_proc_main_pid = None
Task.__update_master_pid_task(task=None)
except Exception:
# make sure we do not interrupt the exit process
pass
# make sure we store last task state
if self._offline_mode and not is_sub_process:
# noinspection PyBroadException
try:
# make sure the state of the offline data is saved
self._edit()
# create zip file
offline_folder = self.get_offline_mode_folder()
zip_file = offline_folder.as_posix() + '.zip'
with ZipFile(zip_file, 'w', allowZip64=True, compression=ZIP_DEFLATED) as zf:
for filename in offline_folder.rglob('*'):
if filename.is_file():
relative_file_name = filename.relative_to(offline_folder).as_posix()
zf.write(filename.as_posix(), arcname=relative_file_name)
print('ClearML Task: Offline session stored in {}'.format(zip_file))
except Exception:
pass
# delete locking object (lock file)
if self._edit_lock:
# noinspection PyBroadException
try:
del self.__edit_lock
except Exception:
pass
self._edit_lock = None
# make sure no one will re-enter the shutdown method
self._at_exit_called = True
if not is_sub_process and BackgroundMonitor.is_subprocess_enabled():
BackgroundMonitor.wait_for_sub_process(self)
# we are done
return
@classmethod
def _remove_exception_hooks(cls):
if cls.__exit_hook:
cls.__exit_hook.remove_exception_hooks()
@classmethod
def _remove_signal_hooks(cls):
if cls.__exit_hook:
cls.__exit_hook.remove_signal_hooks()
@classmethod
def __register_at_exit(cls, exit_callback):
if cls.__exit_hook is None:
# noinspection PyBroadException
try:
cls.__exit_hook = ExitHooks(exit_callback)
cls.__exit_hook.hook()
except Exception:
cls.__exit_hook = None
else:
cls.__exit_hook.update_callback(exit_callback)
@classmethod
def __get_task(
cls,
task_id=None, # type: Optional[str]
project_name=None, # type: Optional[str]
task_name=None, # type: Optional[str]
include_archived=True, # type: bool
tags=None, # type: Optional[Sequence[str]]
task_filter=None # type: Optional[dict]
):
# type: (...) -> TaskInstance
if task_id:
return cls(private=cls.__create_protection, task_id=task_id, log_to_backend=False)
if project_name:
res = cls._send(
cls._get_default_session(),
projects.GetAllRequest(
name=exact_match_regex(project_name)
)
)
project = get_single_result(entity='project', query=project_name, results=res.response.projects)
else:
project = None
# get default session, before trying to access tasks.Task so that we do not create two sessions.
session = cls._get_default_session()
system_tags = 'system_tags' if hasattr(tasks.Task, 'system_tags') else 'tags'
task_filter = task_filter or {}
if not include_archived:
task_filter['system_tags'] = (task_filter.get('system_tags') or []) + ['-{}'.format(cls.archived_tag)]
if tags:
task_filter['tags'] = (task_filter.get('tags') or []) + list(tags)
res = cls._send(
session,
tasks.GetAllRequest(
project=[project.id] if project else None,
name=exact_match_regex(task_name) if task_name else None,
only_fields=['id', 'name', 'last_update', system_tags],
**task_filter
)
)
res_tasks = res.response.tasks
# if we have more than one result, filter out the 'archived' results
# notice that if we only have one result we do get the archived one as well.
if len(res_tasks) > 1:
filtered_tasks = [t for t in res_tasks if not getattr(t, system_tags, None) or
cls.archived_tag not in getattr(t, system_tags, None)]
# if we did not filter everything (otherwise we have only archived tasks, so we return them)
if filtered_tasks:
res_tasks = filtered_tasks
task = get_single_result(
entity='task',
query={k: v for k, v in dict(
project_name=project_name, task_name=task_name, tags=tags,
include_archived=include_archived, task_filter=task_filter).items() if v},
results=res_tasks, raise_on_error=False)
if not task:
# should never happen
return None # noqa
return cls(
private=cls.__create_protection,
task_id=task.id,
log_to_backend=False,
)
@classmethod
def __get_tasks(
cls,
task_ids=None, # type: Optional[Sequence[str]]
project_name=None, # type: Optional[Union[Sequence[str],str]]
task_name=None, # type: Optional[str]
**kwargs # type: Any
):
# type: (...) -> List[Task]
if task_ids:
if isinstance(task_ids, six.string_types):
task_ids = [task_ids]
return [cls(private=cls.__create_protection, task_id=task_id, log_to_backend=False) for task_id in task_ids]
queried_tasks = cls._query_tasks(
project_name=project_name, task_name=task_name, fetch_only_first_page=True, **kwargs
)
if len(queried_tasks) == 500:
LoggerRoot.get_base_logger().warning(
"Too many requests when calling Task.get_tasks()."
" Returning only the first 500 results."
" Use Task.query_tasks() to fetch all task IDs"
)
return [cls(private=cls.__create_protection, task_id=task.id, log_to_backend=False) for task in queried_tasks]
@classmethod
def _query_tasks(
cls,
task_ids=None,
project_name=None,
task_name=None,
fetch_only_first_page=False,
exact_match_regex_flag=True,
**kwargs
):
res = None
if not task_ids:
task_ids = None
elif isinstance(task_ids, six.string_types):
task_ids = [task_ids]
if project_name and isinstance(project_name, str):
project_names = [project_name]
else:
project_names = project_name
project_ids = []
projects_not_found = []
if project_names:
for name in project_names:
aux_kwargs = {}
if kwargs.get("_allow_extra_fields_"):
aux_kwargs["_allow_extra_fields_"] = True
aux_kwargs["search_hidden"] = kwargs.get("search_hidden", False)
res = cls._send(
cls._get_default_session(),
projects.GetAllRequest(
name=exact_match_regex(name) if exact_match_regex_flag else name,
**aux_kwargs
)
)
if res.response and res.response.projects:
project_ids.extend([project.id for project in res.response.projects])
else:
projects_not_found.append(name)
if projects_not_found:
# If any of the given project names does not exist, fire off a warning
LoggerRoot.get_base_logger().warning(
"No projects were found with name(s): {}".format(", ".join(projects_not_found))
)
if not project_ids:
# If not a single project exists or was found, return empty right away
return []
session = cls._get_default_session()
system_tags = 'system_tags' if hasattr(tasks.Task, 'system_tags') else 'tags'
only_fields = ['id', 'name', 'last_update', system_tags]
if kwargs and kwargs.get('only_fields'):
only_fields = list(set(kwargs.pop('only_fields')) | set(only_fields))
# if we have specific page to look for, we should only get the requested one
if not fetch_only_first_page and kwargs and 'page' in kwargs:
fetch_only_first_page = True
ret_tasks = []
page = -1
page_size = 500
while page == -1 or (not fetch_only_first_page and res and len(res.response.tasks) == page_size):
page += 1
# work on a copy and make sure we override all fields with ours
request_kwargs = dict(
id=task_ids,
project=project_ids if project_ids else kwargs.pop("project", None),
name=task_name if task_name else kwargs.pop("name", None),
only_fields=only_fields,
page=page,
page_size=page_size,
)
# make sure we always override with the kwargs (specifically page selection / page_size)
request_kwargs.update(kwargs or {})
res = cls._send(
session,
tasks.GetAllRequest(**request_kwargs),
)
ret_tasks.extend(res.response.tasks)
return ret_tasks
@classmethod
def _wait_for_deferred(cls, task):
# type: (Optional[Task]) -> None
"""
Make sure the task object deferred `Task.init` is completed.
Accessing any of the `task` object's property will ensure the Task.init call was also complete
This is an internal utility function
:param task: Optional deferred Task object as returned form Task.init
"""
if not task:
return
# force deferred init to complete
task.id # noqa
@classmethod
def __get_hash_key(cls, *args):
def normalize(x):
return "<{}>".format(x) if x is not None else ""
return ":".join(map(normalize, args))
@classmethod
def __get_last_used_task_id(cls, default_project_name, default_task_name, default_task_type):
hash_key = cls.__get_hash_key(
cls._get_api_server(), default_project_name, default_task_name, default_task_type)
# check if we have a cached task_id we can reuse
# it must be from within the last 24h and with the same project/name/type
task_sessions = SessionCache.load_dict(str(cls))
task_data = task_sessions.get(hash_key)
if task_data is None:
return None
try:
task_data['type'] = cls.TaskTypes(task_data['type'])
except (ValueError, KeyError):
LoggerRoot.get_base_logger().warning(
"Corrupted session cache entry: {}. "
"Unsupported task type: {}"
"Creating a new task.".format(hash_key, task_data['type']),
)
return None
return task_data
@classmethod
def __update_last_used_task_id(cls, default_project_name, default_task_name, default_task_type, task_id):
hash_key = cls.__get_hash_key(
cls._get_api_server(), default_project_name, default_task_name, default_task_type)
task_id = str(task_id)
# update task session cache
task_sessions = SessionCache.load_dict(str(cls))
last_task_session = {'time': time.time(), 'project': default_project_name, 'name': default_task_name,
'type': default_task_type, 'id': task_id}
# remove stale sessions
for k in list(task_sessions.keys()):
if ((time.time() - task_sessions[k].get('time', 0)) >
60 * 60 * cls.__task_id_reuse_time_window_in_hours):
task_sessions.pop(k)
# update current session
task_sessions[hash_key] = last_task_session
# store
SessionCache.store_dict(str(cls), task_sessions)
@classmethod
def __task_timed_out(cls, task_data):
return \
task_data and \
task_data.get('id') and \
task_data.get('time') and \
(time.time() - task_data.get('time')) > (60 * 60 * cls.__task_id_reuse_time_window_in_hours)
@classmethod
def __get_task_api_obj(cls, task_id, only_fields=None):
if not task_id or cls._offline_mode:
return None
all_tasks = cls._send(
cls._get_default_session(),
tasks.GetAllRequest(id=[task_id], only_fields=only_fields),
).response.tasks
# The task may not exist in environment changes
if not all_tasks:
return None
return all_tasks[0]
@classmethod
def __task_is_relevant(cls, task_data):
"""
Check that a cached task is relevant for reuse.
A task is relevant for reuse if:
1. It is not timed out i.e it was last use in the previous 24 hours.
2. It's name, project and type match the data in the server, so not
to override user changes made by using the UI.
:param task_data: A mapping from 'id', 'name', 'project', 'type' keys
to the task's values, as saved in the cache.
:return: True, if the task is relevant for reuse. False, if not.
"""
if not task_data:
return False
if cls.__task_timed_out(task_data):
return False
task_id = task_data.get('id')
if not task_id:
return False
# noinspection PyBroadException
try:
task = cls.__get_task_api_obj(task_id, ('id', 'name', 'project', 'type'))
except Exception:
task = None
if task is None:
return False
project_name = None
if task.project:
# noinspection PyBroadException
try:
project = cls._send(
cls._get_default_session(),
projects.GetByIdRequest(project=task.project)
).response.project
if project:
project_name = project.name
except Exception:
pass
if task_data.get('type') and \
task_data.get('type') not in (cls.TaskTypes.training, cls.TaskTypes.testing) and \
not Session.check_min_api_version(2.8):
print('WARNING: Changing task type to "{}" : '
'clearml-server does not support task type "{}", '
'please upgrade clearml-server.'.format(cls.TaskTypes.training, task_data['type'].value))
task_data['type'] = cls.TaskTypes.training
compares = (
(task.name, 'name'),
(project_name, 'project'),
(task.type, 'type'),
)
# compare after casting to string to avoid enum instance issues
# remember we might have replaced the api version by now, so enums are different
return all(six.text_type(server_data) == six.text_type(task_data.get(task_data_key))
for server_data, task_data_key in compares)
@classmethod
def __close_timed_out_task(cls, task_data):
if not task_data:
return False
task = cls.__get_task_api_obj(task_data.get('id'), ('id', 'status'))
if task is None:
return False
stopped_statuses = (
cls.TaskStatusEnum.stopped,
cls.TaskStatusEnum.published,
cls.TaskStatusEnum.publishing,
cls.TaskStatusEnum.closed,
cls.TaskStatusEnum.failed,
cls.TaskStatusEnum.completed,
)
if task.status not in stopped_statuses:
cls._send(
cls._get_default_session(),
tasks.StoppedRequest(
task=task.id,
force=True,
status_message="Stopped timed out development task"
),
)
return True
return False
@classmethod
def __add_model_wildcards(cls, auto_connect_frameworks):
if isinstance(auto_connect_frameworks, dict):
for k, v in auto_connect_frameworks.items():
if isinstance(v, str):
v = [v]
if isinstance(v, (list, tuple)):
WeightsFileHandler.model_wildcards[k] = [str(i) for i in v]
def callback(_, model_info):
if not model_info:
return None
parents = Framework.get_framework_parents(model_info.framework)
wildcards = []
for parent in parents:
if WeightsFileHandler.model_wildcards.get(parent):
wildcards.extend(WeightsFileHandler.model_wildcards[parent])
if not wildcards:
return model_info
if not matches_any_wildcard(model_info.local_model_path, wildcards):
return None
return model_info
WeightsFileHandler.add_pre_callback(callback)
def __getstate__(self):
# type: () -> dict
return {'main': self.is_main_task(), 'id': self.id, 'offline': self.is_offline()}
def __setstate__(self, state):
if state['main'] and not self.__main_task:
Task.__forked_proc_main_pid = None
Task.__update_master_pid_task(task=state['id'])
if state['offline']:
Task.set_offline(offline_mode=state['offline'])
task = Task.init(
continue_last_task=state['id'],
auto_connect_frameworks={'detect_repository': False}) \
if state['main'] else Task.get_task(task_id=state['id'])
self.__dict__ = task.__dict__