mirror of
https://github.com/clearml/clearml
synced 2025-01-31 17:17:00 +00:00
781 lines
32 KiB
Python
781 lines
32 KiB
Python
import re
|
|
from copy import copy
|
|
from datetime import datetime
|
|
from logging import getLogger
|
|
from threading import Thread, Event
|
|
from time import time
|
|
|
|
from plotly import graph_objects as go
|
|
from plotly.subplots import make_subplots
|
|
|
|
from attr import attrib, attrs
|
|
from typing import Sequence, Optional, Mapping, Callable, Any, Union
|
|
|
|
from ..task import Task
|
|
from ..automation import TrainsJob
|
|
from ..model import BaseModel
|
|
from ..utilities.plotly_reporter import create_plotly_table
|
|
|
|
|
|
class PipelineController(object):
|
|
"""
|
|
Pipeline controller.
|
|
Pipeline is a DAG of base tasks, each task will be cloned (arguments changed as required) executed and monitored
|
|
The pipeline process (task) itself can be executed manually or by the trains-agent services queue.
|
|
Notice: The pipeline controller lives as long as the pipeline itself is being executed.
|
|
"""
|
|
_tag = 'pipeline'
|
|
_step_pattern = r"\${[^}]*}"
|
|
_config_section = 'Pipeline'
|
|
|
|
@attrs
|
|
class Node(object):
|
|
name = attrib(type=str)
|
|
base_task_id = attrib(type=str)
|
|
queue = attrib(type=str, default=None)
|
|
parents = attrib(type=list, default=[])
|
|
timeout = attrib(type=float, default=None)
|
|
parameters = attrib(type=dict, default={})
|
|
executed = attrib(type=str, default=None)
|
|
job = attrib(type=TrainsJob, default=None)
|
|
|
|
def __init__(
|
|
self,
|
|
pool_frequency=0.2, # type: float
|
|
default_execution_queue=None, # type: Optional[str]
|
|
pipeline_time_limit=None, # type: Optional[float]
|
|
auto_connect_task=True, # type: Union[bool, Task]
|
|
always_create_task=False, # type: bool
|
|
add_pipeline_tags=False, # type: bool
|
|
):
|
|
# type: (...) -> ()
|
|
"""
|
|
Create a new pipeline controller. The newly created object will launch and monitor the new experiments.
|
|
|
|
:param float pool_frequency: The pooling frequency (in minutes) for monitoring experiments / states.
|
|
:param str default_execution_queue: The execution queue to use if no execution queue is provided
|
|
:param float pipeline_time_limit: The maximum time (minutes) for the entire pipeline process. The
|
|
default is ``None``, indicating no time limit.
|
|
:param bool auto_connect_task: Store pipeline arguments and configuration in the Task
|
|
- ``True`` - The pipeline argument and configuration will be stored in the current Task. All arguments will
|
|
be under the hyper-parameter section ``Pipeline``, and the pipeline DAG will be stored as a
|
|
Task configuration object named ``Pipeline``.
|
|
|
|
- ``False`` - Do not store with Task.
|
|
- ``Task`` - A specific Task object to connect the pipeline with.
|
|
:param bool always_create_task: Always create a new Task
|
|
- ``True`` - No current Task initialized. Create a new task named ``Pipeline`` in the ``base_task_id``
|
|
project.
|
|
|
|
- ``False`` - Use the :py:meth:`task.Task.current_task` (if exists) to report statistics.
|
|
:param bool add_pipeline_tags: (default: False) if True, add `pipe: <pipeline_task_id>` tag to all
|
|
steps (Tasks) created by this pipeline.
|
|
"""
|
|
self._nodes = {}
|
|
self._running_nodes = []
|
|
self._start_time = None
|
|
self._pipeline_time_limit = pipeline_time_limit * 60. if pipeline_time_limit else None
|
|
self._default_execution_queue = default_execution_queue
|
|
self._pool_frequency = pool_frequency * 60.
|
|
self._thread = None
|
|
self._stop_event = None
|
|
self._experiment_created_cb = None
|
|
self._add_pipeline_tags = add_pipeline_tags
|
|
self._task = auto_connect_task if isinstance(auto_connect_task, Task) else Task.current_task()
|
|
self._step_ref_pattern = re.compile(self._step_pattern)
|
|
if not self._task and always_create_task:
|
|
self._task = Task.init(
|
|
project_name='Pipelines',
|
|
task_name='Pipeline {}'.format(datetime.now()),
|
|
task_type=Task.TaskTypes.controller,
|
|
)
|
|
|
|
# make sure all the created tasks are our children, as we are creating them
|
|
if self._task:
|
|
self._task.add_tags([self._tag])
|
|
self._auto_connect_task = bool(auto_connect_task)
|
|
|
|
def add_step(
|
|
self,
|
|
name, # type: str
|
|
base_task_id=None, # type: Optional[str]
|
|
parents=None, # type: Optional[Sequence[str]]
|
|
parameter_override=None, # type: Optional[Mapping[str, Any]]
|
|
execution_queue=None, # type: Optional[str]
|
|
time_limit=None, # type: Optional[float]
|
|
base_task_project=None, # type: Optional[str]
|
|
base_task_name=None, # type: Optional[str]
|
|
):
|
|
# type: (...) -> bool
|
|
"""
|
|
Add a step to the pipeline execution DAG.
|
|
Each step must have a unique name (this name will later be used to address the step)
|
|
|
|
:param str name: Unique of the step. For example `stage1`
|
|
:param str base_task_id: The Task ID to use for the step. Each time the step is executed,
|
|
the base Task is cloned, then the cloned task will be sent for execution.
|
|
:param list parents: Optional list of parent nodes in the DAG.
|
|
The current step in the pipeline will be sent for execution only after all the parent nodes
|
|
have been executed successfully.
|
|
:param dict parameter_override: Optional parameter overriding dictionary.
|
|
The dict values can reference a previously executed step using the following form '${step_name}'
|
|
Examples:
|
|
Artifact access
|
|
parameter_override={'Args/input_file': '${stage1.artifacts.mydata.url}' }
|
|
Model access (last model used)
|
|
parameter_override={'Args/input_file': '${stage1.models.output.-1.url}' }
|
|
Parameter access
|
|
parameter_override={'Args/input_file': '${stage3.parameters.Args/input_file}' }
|
|
Task ID
|
|
parameter_override={'Args/input_file': '${stage3.id}' }
|
|
:param str execution_queue: Optional, the queue to use for executing this specific step.
|
|
If not provided, the task will be sent to the default execution queue, as defined on the class
|
|
:param float time_limit: Default None, no time limit.
|
|
Step execution time limit, if exceeded the Task is aborted and the pipeline is stopped and marked failed.
|
|
:param str base_task_project: If base_task_id is not given,
|
|
use the base_task_project and base_task_name combination to retrieve the base_task_id to use for the step.
|
|
:param str base_task_name: If base_task_id is not given,
|
|
use the base_task_project and base_task_name combination to retrieve the base_task_id to use for the step.
|
|
:return: True if successful
|
|
"""
|
|
# when running remotely do nothing, we will deserialize ourselves when we start
|
|
if self._task and not self._task.running_locally() and self._task.is_main_task():
|
|
return True
|
|
|
|
if name in self._nodes:
|
|
raise ValueError('Node named \'{}\' already exists in the pipeline dag'.format(name))
|
|
|
|
if not base_task_id:
|
|
if not base_task_project or not base_task_name:
|
|
raise ValueError('Either base_task_id or base_task_project/base_task_name must be provided')
|
|
base_task = Task.get_task(project_name=base_task_project, task_name=base_task_name)
|
|
if not base_task:
|
|
raise ValueError('Could not find base_task_project={} base_task_name={}'.format(
|
|
base_task_project, base_task_name))
|
|
base_task_id = base_task.id
|
|
|
|
self._nodes[name] = self.Node(
|
|
name=name, base_task_id=base_task_id, parents=parents or [],
|
|
queue=execution_queue, timeout=time_limit,
|
|
parameters=parameter_override or {})
|
|
return True
|
|
|
|
def start(self, run_remotely=False, step_task_created_callback=None):
|
|
# type: (Union[bool, str], Optional[Callable[[PipelineController.Node, dict], None]]) -> bool
|
|
"""
|
|
Start the pipeline controller.
|
|
If the calling process is stopped, then the controller stops as well.
|
|
|
|
:param bool run_remotely: (default False), If True stop the current process and continue execution
|
|
on a remote machine. This is done by calling the Task.execute_remotely with the queue name 'services'.
|
|
If `run_remotely` is a string, it will specify the execution queue for the pipeline remote execution.
|
|
:param Callable step_task_created_callback: Callback function, called when a step (Task) is created
|
|
and before it is sent for execution.
|
|
|
|
.. code-block:: py
|
|
|
|
def step_created_callback(
|
|
node, # type: PipelineController.Node,
|
|
parameters, # type: dict
|
|
):
|
|
pass
|
|
|
|
:return: True, if the controller started. False, if the controller did not start.
|
|
|
|
"""
|
|
if self._thread:
|
|
return True
|
|
|
|
# serialize pipeline state
|
|
pipeline_dag = self._serialize()
|
|
self._task.connect_configuration(pipeline_dag, name=self._config_section)
|
|
params = {'continue_pipeline': False,
|
|
'default_queue': self._default_execution_queue,
|
|
'add_pipeline_tags': self._add_pipeline_tags,
|
|
}
|
|
self._task.connect(params, name=self._config_section)
|
|
# deserialize back pipeline state
|
|
if not params['continue_pipeline']:
|
|
for k in pipeline_dag:
|
|
pipeline_dag[k]['executed'] = None
|
|
|
|
self._default_execution_queue = params['default_queue']
|
|
self._add_pipeline_tags = params['add_pipeline_tags']
|
|
self._deserialize(pipeline_dag)
|
|
|
|
# if we continue the pipeline, make sure that we re-execute failed tasks
|
|
if params['continue_pipeline']:
|
|
for node in self._nodes.values():
|
|
if node.executed is False:
|
|
node.executed = None
|
|
|
|
if not self._verify():
|
|
raise ValueError("Failed verifying pipeline execution graph, "
|
|
"it has either inaccessible nodes, or contains cycles")
|
|
|
|
self._update_execution_plot()
|
|
|
|
if run_remotely:
|
|
self._task.execute_remotely(queue_name='services' if not isinstance(run_remotely, str) else run_remotely)
|
|
# we will not get here if we are not running remotely
|
|
|
|
self._start_time = time()
|
|
self._stop_event = Event()
|
|
self._experiment_created_cb = step_task_created_callback
|
|
self._thread = Thread(target=self._daemon)
|
|
self._thread.daemon = True
|
|
self._thread.start()
|
|
return True
|
|
|
|
def stop(self, timeout=None):
|
|
# type: (Optional[float]) -> ()
|
|
"""
|
|
Stop the pipeline controller and the optimization thread.
|
|
|
|
:param float timeout: Wait timeout for the optimization thread to exit (minutes).
|
|
The default is ``None``, indicating do not wait terminate immediately.
|
|
"""
|
|
pass
|
|
|
|
def wait(self, timeout=None):
|
|
# type: (Optional[float]) -> bool
|
|
"""
|
|
Wait for the pipeline to finish.
|
|
|
|
.. note::
|
|
This method does not stop the pipeline. Call :meth:`stop` to terminate the pipeline.
|
|
|
|
:param float timeout: The timeout to wait for the pipeline to complete (minutes).
|
|
If ``None``, then wait until we reached the timeout, or pipeline completed.
|
|
|
|
:return: True, if the pipeline finished. False, if the pipeline timed out.
|
|
|
|
"""
|
|
if not self.is_running():
|
|
return True
|
|
|
|
if timeout is not None:
|
|
timeout *= 60.
|
|
|
|
_thread = self._thread
|
|
|
|
_thread.join(timeout=timeout)
|
|
if _thread.is_alive():
|
|
return False
|
|
|
|
return True
|
|
|
|
def is_running(self):
|
|
# type: () -> bool
|
|
"""
|
|
return True if the pipeline controller is running.
|
|
|
|
:return: A boolean indicating whether the pipeline controller is active (still running) or stopped.
|
|
"""
|
|
return self._thread is not None
|
|
|
|
def elapsed(self):
|
|
# type: () -> float
|
|
"""
|
|
Return minutes elapsed from controller stating time stamp.
|
|
|
|
:return: The minutes from controller start time. A negative value means the process has not started yet.
|
|
"""
|
|
if self._start_time is None:
|
|
return -1.0
|
|
return (time() - self._start_time) / 60.
|
|
|
|
def get_pipeline_dag(self):
|
|
# type: () -> Mapping[str, PipelineController.Node]
|
|
"""
|
|
Return the pipeline execution graph, each node in the DAG is PipelineController.Node object.
|
|
Graph itself is a dictionary of Nodes (key based on the Node name),
|
|
each node holds links to its parent Nodes (identified by their unique names)
|
|
|
|
:return: execution tree, as a nested dictionary
|
|
Example:
|
|
{
|
|
'stage1' : Node() {
|
|
name: 'stage1'
|
|
job: TrainsJob
|
|
...
|
|
},
|
|
}
|
|
"""
|
|
return self._nodes
|
|
|
|
def get_processed_nodes(self):
|
|
# type: () -> Sequence[PipelineController.Node]
|
|
"""
|
|
Return the a list of the processed pipeline nodes, each entry in the list is PipelineController.Node object.
|
|
|
|
:return: executed (excluding currently executing) nodes list
|
|
"""
|
|
return {k: n for k, n in self._nodes.items() if n.executed}
|
|
|
|
def get_running_nodes(self):
|
|
# type: () -> Sequence[PipelineController.Node]
|
|
"""
|
|
Return the a list of the currently running pipeline nodes,
|
|
each entry in the list is PipelineController.Node object.
|
|
|
|
:return: Currently running nodes list
|
|
"""
|
|
return {k: n for k, n in self._nodes.items() if k in self._running_nodes}
|
|
|
|
def _serialize(self):
|
|
# type: () -> dict
|
|
"""
|
|
Store the definition of the pipeline DAG into a dictionary.
|
|
This dictionary will be used to store the DAG as a configuration on the Task
|
|
:return:
|
|
"""
|
|
dag = {name: dict((k, v) for k, v in node.__dict__.items() if k not in ('job', 'name'))
|
|
for name, node in self._nodes.items()}
|
|
|
|
return dag
|
|
|
|
def _deserialize(self, dag_dict):
|
|
# type: (dict) -> ()
|
|
"""
|
|
Restore the DAG from a dictionary.
|
|
This will be used to create the DAG from the dict stored on the Task, when running remotely.
|
|
:return:
|
|
"""
|
|
self._nodes = {k: self.Node(name=k, **v) for k, v in dag_dict.items()}
|
|
|
|
def _verify(self):
|
|
# type: () -> bool
|
|
"""
|
|
Verify the DAG, (i.e. no cycles and no missing parents)
|
|
On error raise ValueError with verification details
|
|
|
|
:return: return True iff DAG has no errors
|
|
"""
|
|
# verify nodes
|
|
for node in self._nodes.values():
|
|
# raise value error if not verified
|
|
self._verify_node(node)
|
|
|
|
# check the dag itself
|
|
if not self._verify_dag():
|
|
return False
|
|
|
|
return True
|
|
|
|
def _verify_node(self, node):
|
|
# type: (PipelineController.Node) -> bool
|
|
"""
|
|
Raise ValueError on verification errors
|
|
|
|
:return: Return True iff the specific node is verified
|
|
"""
|
|
if not node.base_task_id:
|
|
raise ValueError("Node '{}', base_task_id is empty".format(node.name))
|
|
|
|
if not self._default_execution_queue and not node.queue:
|
|
raise ValueError("Node '{}' missing execution queue, "
|
|
"no default queue defined and no specific node queue defined".format(node.name))
|
|
|
|
task = Task.get_task(task_id=node.base_task_id)
|
|
if not task:
|
|
raise ValueError("Node '{}', base_task_id={} is invalid".format(node.name, node.base_task_id))
|
|
|
|
pattern = self._step_ref_pattern
|
|
|
|
for v in node.parameters.values():
|
|
if isinstance(v, str):
|
|
for g in pattern.findall(v):
|
|
self.__verify_step_reference(node, g)
|
|
|
|
return True
|
|
|
|
def _verify_dag(self):
|
|
# type: () -> bool
|
|
"""
|
|
:return: True iff the pipeline dag is fully accessible and contains no cycles
|
|
"""
|
|
visited = set()
|
|
prev_visited = None
|
|
while prev_visited != visited:
|
|
prev_visited = copy(visited)
|
|
for k, node in self._nodes.items():
|
|
if k in visited:
|
|
continue
|
|
if not all(p in visited for p in node.parents or []):
|
|
continue
|
|
visited.add(k)
|
|
# return False if we did not cover all the nodes
|
|
return not bool(set(self._nodes.keys()) - visited)
|
|
|
|
def _launch_node(self, node):
|
|
# type: (PipelineController.Node) -> ()
|
|
"""
|
|
Launch a single node (create and enqueue a TrainsJob)
|
|
|
|
:param node: Node to launch
|
|
:return: Return True if a new job was launched
|
|
"""
|
|
if node.job or node.executed:
|
|
return False
|
|
|
|
updated_hyper_parameters = {}
|
|
for k, v in node.parameters.items():
|
|
updated_hyper_parameters[k] = self._parse_step_ref(v)
|
|
|
|
node.job = TrainsJob(
|
|
base_task_id=node.base_task_id, parameter_override=updated_hyper_parameters,
|
|
tags=['pipe: {}'.format(self._task.id)] if self._add_pipeline_tags and self._task else None,
|
|
parent=self._task.id if self._task else None)
|
|
if self._experiment_created_cb:
|
|
self._experiment_created_cb(node, updated_hyper_parameters)
|
|
node.job.launch(queue_name=node.queue or self._default_execution_queue)
|
|
return True
|
|
|
|
def _update_execution_plot(self):
|
|
# type: () -> ()
|
|
"""
|
|
Update sankey diagram of the current pipeline
|
|
"""
|
|
sankey_node = dict(
|
|
label=[],
|
|
color=[],
|
|
hovertemplate='%{label}<extra></extra>',
|
|
# customdata=[],
|
|
# hovertemplate='%{label}<br />Hyper-Parameters:<br />%{customdata}<extra></extra>',
|
|
)
|
|
sankey_link = dict(
|
|
source=[],
|
|
target=[],
|
|
value=[],
|
|
# hovertemplate='%{target.label}<extra></extra>',
|
|
hovertemplate='<extra></extra>',
|
|
)
|
|
visited = []
|
|
node_params = []
|
|
nodes = list(self._nodes.values())
|
|
while nodes:
|
|
next_nodes = []
|
|
for node in nodes:
|
|
if not all(p in visited for p in node.parents or []):
|
|
next_nodes.append(node)
|
|
continue
|
|
visited.append(node.name)
|
|
idx = len(visited) - 1
|
|
parents = [visited.index(p) for p in node.parents or []]
|
|
node_params.append(node.job.task_parameter_override if node.job else node.parameters) or {}
|
|
# sankey_node['label'].append(node.name)
|
|
# sankey_node['customdata'].append(
|
|
# '<br />'.join('{}: {}'.format(k, v) for k, v in (node.parameters or {}).items()))
|
|
sankey_node['label'].append(
|
|
'{}<br />'.format(node.name) +
|
|
'<br />'.join('{}: {}'.format(k, v if len(str(v)) < 24 else (str(v)[:24]+' ...'))
|
|
for k, v in (node.parameters or {}).items()))
|
|
sankey_node['color'].append(
|
|
("blue" if not node.job or not node.job.is_failed() else "red")
|
|
if node.executed is not None else ("green" if node.job else "lightsteelblue"))
|
|
|
|
for p in parents:
|
|
sankey_link['source'].append(p)
|
|
sankey_link['target'].append(idx)
|
|
sankey_link['value'].append(1)
|
|
|
|
nodes = next_nodes
|
|
|
|
# make sure we have no independent (unconnected) nodes
|
|
single_nodes = []
|
|
for i in [n for n in range(len(visited)) if n not in sankey_link['source'] and n not in sankey_link['target']]:
|
|
single_nodes.append(i)
|
|
|
|
# create the sankey graph
|
|
dag_flow = go.Sankey(
|
|
node=sankey_node, link=sankey_link, textfont=dict(color='rgba(0,0,0,0)', size=1)
|
|
)
|
|
|
|
# create the detailed parameter table
|
|
table_values = [["Pipeline Step", "Task ID", "Parameters"]]
|
|
table_values += [
|
|
[v, self._nodes[v].executed or (self._nodes[v].job.task_id() if self._nodes[v].job else ''), str(n)]
|
|
for v, n in zip(visited, node_params)]
|
|
|
|
# hack, show single node sankey
|
|
if single_nodes:
|
|
singles_flow = go.Scatter(
|
|
x=list(range(len(single_nodes))), y=[1]*len(single_nodes),
|
|
text=[v for i, v in enumerate(sankey_node['label']) if i in single_nodes],
|
|
mode='markers',
|
|
hovertemplate="%{text}<extra></extra>",
|
|
marker=dict(
|
|
color=[v for i, v in enumerate(sankey_node['color']) if i in single_nodes],
|
|
size=[40]*len(single_nodes),
|
|
),
|
|
showlegend=False,
|
|
)
|
|
# only single nodes
|
|
if len(single_nodes) == len(sankey_node['label']):
|
|
fig = go.Figure(singles_flow)
|
|
else:
|
|
# both single nodes and DAG
|
|
fig = make_subplots(
|
|
rows=2, cols=1,
|
|
row_heights=[4, 1],
|
|
shared_xaxes=False,
|
|
vertical_spacing=0.03,
|
|
specs=[[{"type": "sankey"}],
|
|
[{"type": "xy"}]]
|
|
)
|
|
fig.add_trace(dag_flow, row=1, col=1)
|
|
fig.add_trace(singles_flow, row=2, col=1)
|
|
else:
|
|
# create the sankey plot
|
|
fig = go.Figure(dag_flow)
|
|
|
|
# remove background and axis (for scatter)
|
|
fig.layout.template.layout.plot_bgcolor = None
|
|
fig.layout.xaxis.visible = False
|
|
fig.layout.yaxis.visible = False
|
|
|
|
# report DAG
|
|
self._task.get_logger().report_plotly(
|
|
title='Pipeline', series='Execution Flow', iteration=0, figure=fig)
|
|
# report detailed table
|
|
self._task.get_logger().report_table(
|
|
title='Pipeline Details', series='Execution Details', iteration=0, table_plot=table_values)
|
|
|
|
def _force_task_configuration_update(self):
|
|
pipeline_dag = self._serialize()
|
|
# noinspection PyProtectedMember
|
|
self._task._set_configuration(
|
|
name=self._config_section, config_type='dictionary', config_dict=pipeline_dag)
|
|
|
|
def _daemon(self):
|
|
# type: () -> ()
|
|
"""
|
|
The main pipeline execution loop. This loop is executed on its own dedicated thread.
|
|
:return:
|
|
"""
|
|
pooling_counter = 0
|
|
|
|
while self._stop_event:
|
|
# stop request
|
|
if pooling_counter and self._stop_event.wait(self._pool_frequency):
|
|
break
|
|
|
|
pooling_counter += 1
|
|
|
|
# check the pipeline time limit
|
|
if self._pipeline_time_limit and (time() - self._start_time) > self._pipeline_time_limit:
|
|
break
|
|
|
|
# check the state of all current jobs
|
|
# if no a job ended, continue
|
|
completed_jobs = []
|
|
for j in self._running_nodes:
|
|
node = self._nodes[j]
|
|
if not node.job:
|
|
continue
|
|
if node.job.is_stopped():
|
|
completed_jobs.append(j)
|
|
node.executed = node.job.task_id() if not node.job.is_failed() else False
|
|
elif node.timeout:
|
|
started = node.job.task.data.started
|
|
if (datetime.now().astimezone(started.tzinfo) - started).total_seconds() > node.timeout:
|
|
node.job.abort()
|
|
completed_jobs.append(j)
|
|
node.executed = node.job.task_id()
|
|
|
|
# update running jobs
|
|
self._running_nodes = [j for j in self._running_nodes if j not in completed_jobs]
|
|
|
|
# nothing changed, we can sleep
|
|
if not completed_jobs and self._running_nodes:
|
|
continue
|
|
|
|
# Pull the next jobs in the pipeline, based on the completed list
|
|
next_nodes = []
|
|
for node in self._nodes.values():
|
|
# check if already processed.
|
|
if node.job or node.executed:
|
|
continue
|
|
completed_parents = [bool(p in self._nodes and self._nodes[p].executed) for p in node.parents or []]
|
|
if all(completed_parents):
|
|
next_nodes.append(node.name)
|
|
|
|
# update the execution graph
|
|
for name in next_nodes:
|
|
if self._launch_node(self._nodes[name]):
|
|
print('Launching step: {}'.format(name))
|
|
print('Parameters:\n{}'.format(self._nodes[name].job.task_parameter_override))
|
|
self._running_nodes.append(name)
|
|
else:
|
|
getLogger('trains.automation.controller').error(
|
|
'ERROR: Failed launching step \'{}\': {}'.format(name, self._nodes[name]))
|
|
|
|
# update current state (in configuration, so that we could later continue an aborted pipeline)
|
|
self._force_task_configuration_update()
|
|
|
|
# visualize pipeline state (plot)
|
|
self._update_execution_plot()
|
|
|
|
# quit if all pipelines nodes are fully executed.
|
|
if not next_nodes and not self._running_nodes:
|
|
break
|
|
|
|
# stop all currently running jobs:
|
|
failing_pipeline = False
|
|
for node in self._nodes.values():
|
|
if node.executed is False:
|
|
failing_pipeline = True
|
|
if node.job and node.executed and not node.job.is_stopped():
|
|
node.job.abort()
|
|
|
|
if failing_pipeline and self._task:
|
|
self._task.mark_failed(status_reason='Pipeline step failed')
|
|
|
|
if self._stop_event:
|
|
# noinspection PyBroadException
|
|
try:
|
|
self._stop_event.set()
|
|
except Exception:
|
|
pass
|
|
|
|
def __verify_step_reference(self, node, step_ref_string):
|
|
# type: (PipelineController.Node, str) -> bool
|
|
"""
|
|
Verify the step reference. For example "${step1.parameters.Args/param}"
|
|
:param Node node: calling reference node (used for logging)
|
|
:param str step_ref_string: For example "${step1.parameters.Args/param}"
|
|
:return: True if valid reference
|
|
"""
|
|
parts = step_ref_string[2:-1].split('.')
|
|
v = step_ref_string
|
|
if len(parts) < 2:
|
|
raise ValueError("Node '{}', parameter '{}' is invalid".format(node.name, v))
|
|
prev_step = parts[0]
|
|
input_type = parts[1]
|
|
if prev_step not in self._nodes:
|
|
raise ValueError("Node '{}', parameter '{}', step name '{}' is invalid".format(node.name, v, prev_step))
|
|
if input_type not in ('artifacts', 'parameters', 'models', 'id'):
|
|
raise ValueError(
|
|
"Node {}, parameter '{}', input type '{}' is invalid".format(node.name, v, input_type))
|
|
|
|
if input_type != 'id' and len(parts) < 3:
|
|
raise ValueError("Node '{}', parameter '{}' is invalid".format(node.name, v))
|
|
|
|
if input_type == 'models':
|
|
try:
|
|
model_type = parts[2].lower()
|
|
except Exception:
|
|
raise ValueError(
|
|
"Node '{}', parameter '{}', input type '{}', model_type is missing {}".format(
|
|
node.name, v, input_type, parts))
|
|
if model_type not in ('input', 'output'):
|
|
raise ValueError(
|
|
"Node '{}', parameter '{}', input type '{}', "
|
|
"model_type is invalid (input/output) found {}".format(
|
|
node.name, v, input_type, model_type))
|
|
|
|
if len(parts) < 4:
|
|
raise ValueError(
|
|
"Node '{}', parameter '{}', input type '{}', model index is missing".format(
|
|
node.name, v, input_type))
|
|
|
|
# check casting
|
|
try:
|
|
int(parts[3])
|
|
except Exception:
|
|
raise ValueError(
|
|
"Node '{}', parameter '{}', input type '{}', model index is missing {}".format(
|
|
node.name, v, input_type, parts))
|
|
|
|
if len(parts) < 5:
|
|
raise ValueError(
|
|
"Node '{}', parameter '{}', input type '{}', model property is missing".format(
|
|
node.name, v, input_type))
|
|
|
|
if not hasattr(BaseModel, parts[4]):
|
|
raise ValueError(
|
|
"Node '{}', parameter '{}', input type '{}', model property is invalid {}".format(
|
|
node.name, v, input_type, parts[4]))
|
|
return True
|
|
|
|
def __parse_step_reference(self, step_ref_string):
|
|
"""
|
|
return the adjusted value for "${step...}"
|
|
:param step_ref_string: reference string of the form ${step_name.type.value}"
|
|
:return: str with value
|
|
"""
|
|
parts = step_ref_string[2:-1].split('.')
|
|
if len(parts) < 2:
|
|
raise ValueError("Could not parse reference '{}'".format(step_ref_string))
|
|
prev_step = parts[0]
|
|
input_type = parts[1].lower()
|
|
if prev_step not in self._nodes or not self._nodes[prev_step].job:
|
|
raise ValueError("Could not parse reference '{}', step {} could not be found".format(
|
|
step_ref_string, prev_step))
|
|
if input_type not in ('artifacts', 'parameters', 'models', 'id'):
|
|
raise ValueError("Could not parse reference '{}', type {} not valid".format(step_ref_string, input_type))
|
|
if input_type != 'id' and len(parts) < 3:
|
|
raise ValueError("Could not parse reference '{}', missing fields in {}".format(step_ref_string, parts))
|
|
|
|
task = self._nodes[prev_step].job.task if self._nodes[prev_step].job \
|
|
else Task.get_task(task_id=self._nodes[prev_step].executed)
|
|
task.reload()
|
|
if input_type == 'artifacts':
|
|
# fix \. to use . in artifacts
|
|
artifact_path = ('.'.join(parts[2:])).replace('\\.', '\\_dot_\\')
|
|
artifact_path = artifact_path.split('.')
|
|
|
|
obj = task.artifacts
|
|
for p in artifact_path:
|
|
p = p.replace('\\_dot_\\', '.')
|
|
if isinstance(obj, dict):
|
|
obj = obj.get(p)
|
|
elif hasattr(obj, p):
|
|
obj = getattr(obj, p)
|
|
else:
|
|
raise ValueError("Could not locate artifact {} on previous step {}".format(
|
|
'.'.join(parts[1:]), prev_step))
|
|
return str(obj)
|
|
elif input_type == 'parameters':
|
|
step_params = task.get_parameters()
|
|
param_name = '.'.join(parts[2:])
|
|
if param_name not in step_params:
|
|
raise ValueError("Could not locate parameter {} on previous step {}".format(
|
|
'.'.join(parts[1:]), prev_step))
|
|
return step_params.get(param_name)
|
|
elif input_type == 'models':
|
|
model_type = parts[2].lower()
|
|
if model_type not in ('input', 'output'):
|
|
raise ValueError("Could not locate model {} on previous step {}".format(
|
|
'.'.join(parts[1:]), prev_step))
|
|
try:
|
|
model_idx = int(parts[3])
|
|
model = task.models[model_type][model_idx]
|
|
except Exception:
|
|
raise ValueError("Could not locate model {} on previous step {}, index {} is invalid".format(
|
|
'.'.join(parts[1:]), prev_step, parts[3]))
|
|
|
|
return str(getattr(model, parts[4]))
|
|
|
|
elif input_type == 'id':
|
|
return task.id
|
|
return None
|
|
|
|
def _parse_step_ref(self, value):
|
|
# type: (Any) -> Optional[str]
|
|
"""
|
|
Return the step reference. For example "${step1.parameters.Args/param}"
|
|
:param value: string
|
|
:return:
|
|
"""
|
|
# look for all the step references
|
|
pattern = self._step_ref_pattern
|
|
updated_value = value
|
|
if isinstance(value, str):
|
|
for g in pattern.findall(value):
|
|
# update with actual value
|
|
new_val = self.__parse_step_reference(g)
|
|
updated_value = updated_value.replace(g, new_val, 1)
|
|
return updated_value
|