mirror of
https://github.com/clearml/clearml
synced 2025-01-31 17:17:00 +00:00
136 lines
6.3 KiB
Python
136 lines
6.3 KiB
Python
# ClearML - Example of remote_execution with Pytorch mnist training
|
|
""" the task.remote_execution option is used when it's needed to run part of the code locally and then move it for
|
|
full execution remotely. When running locally, the task.remote_execution() will complete the currently running task and
|
|
enqueue it to a chosen queue. When running in an agent, it will ignore the task.remote_execution() and proceed to execute
|
|
the code. This feature is especially helpful if you want to run the first epoch locally on your machine to debug and to
|
|
make sure code doesn't crash, and then move to a stronger machine for the entire training.
|
|
"""
|
|
|
|
from __future__ import print_function
|
|
import argparse
|
|
import os
|
|
from tempfile import gettempdir
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
import torch.optim as optim
|
|
from torchvision import datasets, transforms
|
|
from clearml import Task, Logger
|
|
|
|
|
|
class Net(nn.Module):
|
|
def __init__(self):
|
|
super(Net, self).__init__()
|
|
self.conv1 = nn.Conv2d(1, 20, 5, 1)
|
|
self.conv2 = nn.Conv2d(20, 50, 5, 1)
|
|
self.fc1 = nn.Linear(4 * 4 * 50, 500)
|
|
self.fc2 = nn.Linear(500, 10)
|
|
|
|
def forward(self, x):
|
|
x = F.relu(self.conv1(x))
|
|
x = F.max_pool2d(x, 2, 2)
|
|
x = F.relu(self.conv2(x))
|
|
x = F.max_pool2d(x, 2, 2)
|
|
x = x.view(-1, 4 * 4 * 50)
|
|
x = F.relu(self.fc1(x))
|
|
x = self.fc2(x)
|
|
return F.log_softmax(x, dim=1)
|
|
|
|
|
|
def train(args, model, device, train_loader, optimizer, epoch):
|
|
model.train()
|
|
for batch_idx, (data, target) in enumerate(train_loader):
|
|
data, target = data.to(device), target.to(device)
|
|
optimizer.zero_grad()
|
|
output = model(data)
|
|
loss = F.nll_loss(output, target)
|
|
loss.backward()
|
|
optimizer.step()
|
|
if batch_idx % args.log_interval == 0:
|
|
Logger.current_logger().report_scalar(
|
|
"train", "loss", iteration=(epoch * len(train_loader) + batch_idx), value=loss.item())
|
|
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
|
|
epoch, batch_idx * len(data), len(train_loader.dataset),
|
|
100. * batch_idx / len(train_loader), loss.item()))
|
|
|
|
|
|
def test(args, model, device, test_loader, epoch):
|
|
model.eval()
|
|
test_loss = 0
|
|
correct = 0
|
|
with torch.no_grad():
|
|
for data, target in test_loader:
|
|
data, target = data.to(device), target.to(device)
|
|
output = model(data)
|
|
test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss
|
|
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
|
|
correct += pred.eq(target.view_as(pred)).sum().item()
|
|
test_loss /= len(test_loader.dataset)
|
|
Logger.current_logger().report_scalar(
|
|
"test", "loss", iteration=epoch, value=test_loss)
|
|
Logger.current_logger().report_scalar(
|
|
"test", "accuracy", iteration=epoch, value=(correct / len(test_loader.dataset)))
|
|
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
|
|
test_loss, correct, len(test_loader.dataset),
|
|
100. * correct / len(test_loader.dataset)))
|
|
|
|
|
|
def main():
|
|
# Connecting ClearML with the current process,
|
|
# from here on everything is logged automatically
|
|
task = Task.init(project_name='examples', task_name='Remote_execution PyTorch MNIST train')
|
|
# Training settings
|
|
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
|
|
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
|
|
help='input batch size for training (default: 64)')
|
|
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
|
|
help='input batch size for testing (default: 1000)')
|
|
parser.add_argument('--epochs', type=int, default=10, metavar='N',
|
|
help='number of epochs to train (default: 10)')
|
|
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
|
|
help='learning rate (default: 0.01)')
|
|
parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
|
|
help='SGD momentum (default: 0.5)')
|
|
parser.add_argument('--no-cuda', action='store_true', default=False,
|
|
help='disables CUDA training')
|
|
parser.add_argument('--seed', type=int, default=1, metavar='S',
|
|
help='random seed (default: 1)')
|
|
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
|
|
help='how many batches to wait before logging training status')
|
|
parser.add_argument('--save-model', action='store_true', default=True,
|
|
help='For Saving the current Model')
|
|
args = parser.parse_args()
|
|
use_cuda = not args.no_cuda and torch.cuda.is_available()
|
|
torch.manual_seed(args.seed)
|
|
device = torch.device("cuda" if use_cuda else "cpu")
|
|
kwargs = {'num_workers': 4, 'pin_memory': True} if use_cuda else {}
|
|
train_loader = torch.utils.data.DataLoader(
|
|
datasets.MNIST(os.path.join('..', 'data'), train=True, download=True,
|
|
transform=transforms.Compose([
|
|
transforms.ToTensor(),
|
|
transforms.Normalize((0.1307,), (0.3081,))
|
|
])),
|
|
batch_size=args.batch_size, shuffle=True, **kwargs)
|
|
test_loader = torch.utils.data.DataLoader(
|
|
datasets.MNIST(os.path.join('..', 'data'), train=False, transform=transforms.Compose([
|
|
transforms.ToTensor(),
|
|
transforms.Normalize((0.1307,), (0.3081,))
|
|
])),
|
|
batch_size=args.test_batch_size, shuffle=True, **kwargs)
|
|
model = Net().to(device)
|
|
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)
|
|
|
|
for epoch in range(1, args.epochs + 1):
|
|
if epoch > 1:
|
|
# We run training for 1 epoch to make sure nothing crashes then local execution will be terminated.
|
|
# Execution will switch to remote execution by the agent listening to specified queue
|
|
task.execute_remotely(queue_name="default")
|
|
train(args, model, device, train_loader, optimizer, epoch)
|
|
test(args, model, device, test_loader, epoch)
|
|
if (args.save_model):
|
|
torch.save(model.state_dict(), os.path.join(gettempdir(), "mnist_cnn.pt"))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|