clearml/examples/datasets/data_ingestion.py
erezalg 385d2a4fa3
Modify clearml-data example task name (#665)
Co-authored-by: Erez Schnaider <erez@clear.ml>
2022-05-03 14:58:07 +03:00

215 lines
7.0 KiB
Python

# Using ClearML's Dataset class to register data
# Make sure to execute dataset_creation.py first
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision.datasets as datasets
import torchvision.transforms as transforms
from ignite.contrib.handlers import TensorboardLogger
from ignite.engine import Events, create_supervised_trainer, create_supervised_evaluator
from ignite.handlers import global_step_from_engine
from ignite.metrics import Accuracy, Loss, Recall
from ignite.utils import setup_logger
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
from clearml import Dataset, Task
dataset_name = "cifar_dataset"
dataset_project = "dataset_examples"
task = Task.init(project_name="Image Example", task_name="Image classification with clearml-data")
params = {
"number_of_epochs": 20,
"batch_size": 64,
"dropout": 0.25,
"base_lr": 0.001,
"momentum": 0.9,
"loss_report": 100,
}
params = task.connect(params) # enabling configuration override by clearml/
print(params) # printing actual configuration (after override in remote mode)
# The below gets the dataset and stores in the cache. If you want to download the dataset regardless if it's in the
# cache, use the Dataset.get(dataset_name, dataset_project).get_mutable_local_copy(path to download)
dataset_path = Dataset.get(
dataset_name=dataset_name, dataset_project=dataset_project
).get_local_copy()
# Dataset and Dataloader initializations
transform = transforms.Compose([transforms.ToTensor()])
trainset = datasets.CIFAR10(
root=dataset_path, train=True, download=False, transform=transform
)
trainloader = torch.utils.data.DataLoader(
trainset, batch_size=params.get("batch_size", 4), shuffle=True, num_workers=10
)
testset = datasets.CIFAR10(
root=dataset_path, train=False, download=False, transform=transform
)
testloader = torch.utils.data.DataLoader(
testset, batch_size=params.get("batch_size", 4), shuffle=False, num_workers=10
)
classes = (
"plane",
"car",
"bird",
"cat",
"deer",
"dog",
"frog",
"horse",
"ship",
"truck",
)
tb_logger = TensorboardLogger(log_dir="cifar-output")
# Helper function to store predictions and scores using matplotlib
def predictions_gt_images_handler(engine, logger, *args, **kwargs):
x, _ = engine.state.batch
y_pred, y = engine.state.output
num_x = num_y = 4
le = num_x * num_y
fig = plt.figure(figsize=(20, 20))
trans = transforms.ToPILImage()
for idx in range(le):
preds = torch.argmax(F.softmax(y_pred[idx], dim=0))
probs = torch.max(F.softmax(y_pred[idx], dim=0))
ax = fig.add_subplot(num_x, num_y, idx + 1, xticks=[], yticks=[])
ax.imshow(trans(x[idx]))
ax.set_title(
"{0} {1:.1f}% (label: {2})".format(
classes[preds], probs * 100, classes[y[idx]]
),
color=("green" if preds == y[idx] else "red"),
)
logger.writer.add_figure(
"predictions vs actuals", figure=fig, global_step=engine.state.epoch
)
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 3)
self.conv2 = nn.Conv2d(6, 16, 3)
self.pool = nn.MaxPool2d(2, 2)
self.fc1 = nn.Linear(16 * 6 * 6, 120)
self.fc2 = nn.Linear(120, 84)
self.dorpout = nn.Dropout(p=params.get("dropout", 0.25))
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 6 * 6)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(self.dorpout(x))
return x
# Training
def run(epochs, lr, momentum, log_interval):
device = "cuda" if torch.cuda.is_available() else "cpu"
net = Net().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=lr, momentum=momentum)
trainer = create_supervised_trainer(net, optimizer, criterion, device=device)
trainer.logger = setup_logger("trainer")
val_metrics = {"accuracy": Accuracy(), "loss": Loss(criterion), "recall": Recall()}
evaluator = create_supervised_evaluator(net, metrics=val_metrics, device=device)
evaluator.logger = setup_logger("evaluator")
# Attach handler to plot trainer's loss every 100 iterations
tb_logger.attach_output_handler(
trainer,
event_name=Events.ITERATION_COMPLETED(every=params.get("loss_report")),
tag="training",
output_transform=lambda loss: {"loss": loss},
)
# Attach handler to dump evaluator's metrics every epoch completed
for tag, evaluator in [("training", trainer), ("validation", evaluator)]:
tb_logger.attach_output_handler(
evaluator,
event_name=Events.EPOCH_COMPLETED,
tag=tag,
metric_names="all",
global_step_transform=global_step_from_engine(trainer),
)
# Attach function to build debug images and report every epoch end
tb_logger.attach(
evaluator,
log_handler=predictions_gt_images_handler,
event_name=Events.EPOCH_COMPLETED(once=1),
)
desc = "ITERATION - loss: {:.2f}"
pbar = tqdm(initial=0, leave=False, total=len(trainloader), desc=desc.format(0))
@trainer.on(Events.ITERATION_COMPLETED(every=log_interval))
def log_training_loss(engine):
pbar.desc = desc.format(engine.state.output)
pbar.update(log_interval)
@trainer.on(Events.EPOCH_COMPLETED)
def log_training_results(engine):
pbar.refresh()
evaluator.run(trainloader)
metrics = evaluator.state.metrics
avg_accuracy = metrics["accuracy"]
avg_nll = metrics["loss"]
tqdm.write(
"Training Results - Epoch: {} Avg accuracy: {:.2f} Avg loss: {:.2f}".format(
engine.state.epoch, avg_accuracy, avg_nll
)
)
@trainer.on(Events.EPOCH_COMPLETED)
def log_validation_results(engine):
evaluator.run(testloader)
metrics = evaluator.state.metrics
avg_accuracy = metrics["accuracy"]
avg_nll = metrics["loss"]
tqdm.write(
"Validation Results - Epoch: {} Avg accuracy: {:.2f} Avg loss: {:.2f}".format(
engine.state.epoch, avg_accuracy, avg_nll
)
)
pbar.n = pbar.last_print_n = 0
@trainer.on(Events.EPOCH_COMPLETED | Events.COMPLETED)
def log_time():
tqdm.write(
"{} took {} seconds".format(
trainer.last_event_name.name,
trainer.state.times[trainer.last_event_name.name],
)
)
trainer.run(trainloader, max_epochs=epochs)
pbar.close()
PATH = "./cifar_net.pth"
torch.save(net.state_dict(), PATH)
print("Finished Training")
print("Task ID number is: {}".format(task.id))
run(params.get("number_of_epochs"), params.get("base_lr"), params.get("momentum"), 10)