mirror of
https://github.com/clearml/clearml
synced 2025-01-31 17:17:00 +00:00
164 lines
5.2 KiB
Python
164 lines
5.2 KiB
Python
# Example of MNIST training with PyTorch and abseil integration
|
|
|
|
from __future__ import print_function
|
|
|
|
import os
|
|
from tempfile import gettempdir
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
import torch.optim as optim
|
|
from absl import app, flags
|
|
from torchvision import datasets, transforms
|
|
|
|
from clearml import Task, Logger
|
|
|
|
# Training settings
|
|
FLAGS = flags.FLAGS
|
|
|
|
flags.DEFINE_integer("batch_size", 64, help="Batch size for training")
|
|
flags.DEFINE_integer("test_batch_size", 1000, help="Batch size for testing")
|
|
flags.DEFINE_integer("epochs", 10, help="Number of epochs to train")
|
|
flags.DEFINE_float("lr", 0.01, help="Learning rate")
|
|
flags.DEFINE_float("momentum", 0.5, help="SGD momentum")
|
|
flags.DEFINE_bool("cuda", True, help="Enable CUDA training")
|
|
flags.DEFINE_integer("seed", 1, help="Random seed")
|
|
flags.DEFINE_integer(
|
|
"log_interval", 10, help="How many batches to wait before logging training status"
|
|
)
|
|
flags.DEFINE_bool("save_model", True, help="For saving the current Model")
|
|
|
|
|
|
class Net(nn.Module):
|
|
def __init__(self):
|
|
super(Net, self).__init__()
|
|
self.conv1 = nn.Conv2d(1, 20, 5, 1)
|
|
self.conv2 = nn.Conv2d(20, 50, 5, 1)
|
|
self.fc1 = nn.Linear(4 * 4 * 50, 500)
|
|
self.fc2 = nn.Linear(500, 10)
|
|
|
|
def forward(self, x):
|
|
x = F.relu(self.conv1(x))
|
|
x = F.max_pool2d(x, 2, 2)
|
|
x = F.relu(self.conv2(x))
|
|
x = F.max_pool2d(x, 2, 2)
|
|
x = x.view(-1, 4 * 4 * 50)
|
|
x = F.relu(self.fc1(x))
|
|
x = self.fc2(x)
|
|
return F.log_softmax(x, dim=1)
|
|
|
|
|
|
def train(args, model, device, train_loader, optimizer, epoch):
|
|
model.train()
|
|
for batch_idx, (data, target) in enumerate(train_loader):
|
|
data, target = data.to(device), target.to(device)
|
|
optimizer.zero_grad()
|
|
output = model(data)
|
|
loss = F.nll_loss(output, target)
|
|
loss.backward()
|
|
optimizer.step()
|
|
if batch_idx % args.log_interval == 0:
|
|
Logger.current_logger().report_scalar(
|
|
"train",
|
|
"loss",
|
|
iteration=(epoch * len(train_loader) + batch_idx),
|
|
value=loss.item(),
|
|
)
|
|
print(
|
|
"Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}".format(
|
|
epoch,
|
|
batch_idx * len(data),
|
|
len(train_loader.dataset),
|
|
100.0 * batch_idx / len(train_loader),
|
|
loss.item(),
|
|
)
|
|
)
|
|
|
|
|
|
def test(args, model, device, test_loader, epoch):
|
|
model.eval()
|
|
test_loss = 0
|
|
correct = 0
|
|
with torch.no_grad():
|
|
for data, target in test_loader:
|
|
data, target = data.to(device), target.to(device)
|
|
output = model(data)
|
|
test_loss += F.nll_loss(
|
|
output, target, reduction="sum"
|
|
).item() # sum up batch loss
|
|
pred = output.argmax(
|
|
dim=1, keepdim=True
|
|
) # get the index of the max log-probability
|
|
correct += pred.eq(target.view_as(pred)).sum().item()
|
|
|
|
test_loss /= len(test_loader.dataset)
|
|
|
|
Logger.current_logger().report_scalar(
|
|
"test", "loss", iteration=epoch, value=test_loss
|
|
)
|
|
Logger.current_logger().report_scalar(
|
|
"test", "accuracy", iteration=epoch, value=(correct / len(test_loader.dataset))
|
|
)
|
|
print(
|
|
"Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)".format(
|
|
test_loss,
|
|
correct,
|
|
len(test_loader.dataset),
|
|
100.0 * correct / len(test_loader.dataset),
|
|
)
|
|
)
|
|
|
|
|
|
def main(_):
|
|
# Connecting ClearML with the current process,
|
|
# from here on everything is logged automatically
|
|
task = Task.init(project_name="examples", task_name="PyTorch MNIST train with abseil")
|
|
|
|
use_cuda = FLAGS.cuda and torch.cuda.is_available()
|
|
|
|
torch.manual_seed(FLAGS.seed)
|
|
|
|
device = torch.device("cuda" if use_cuda else "cpu")
|
|
|
|
kwargs = {"num_workers": 4, "pin_memory": True} if use_cuda else {}
|
|
train_loader = torch.utils.data.DataLoader(
|
|
datasets.MNIST(
|
|
os.path.join("..", "data"),
|
|
train=True,
|
|
download=True,
|
|
transform=transforms.Compose(
|
|
[transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]
|
|
),
|
|
),
|
|
batch_size=FLAGS.batch_size,
|
|
shuffle=True,
|
|
**kwargs
|
|
)
|
|
test_loader = torch.utils.data.DataLoader(
|
|
datasets.MNIST(
|
|
os.path.join("..", "data"),
|
|
train=False,
|
|
transform=transforms.Compose(
|
|
[transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]
|
|
),
|
|
),
|
|
batch_size=FLAGS.test_batch_size,
|
|
shuffle=True,
|
|
**kwargs
|
|
)
|
|
|
|
model = Net().to(device)
|
|
optimizer = optim.SGD(model.parameters(), lr=FLAGS.lr, momentum=FLAGS.momentum)
|
|
|
|
for epoch in range(1, FLAGS.epochs + 1):
|
|
train(FLAGS, model, device, train_loader, optimizer, epoch)
|
|
test(FLAGS, model, device, test_loader, epoch)
|
|
|
|
if FLAGS.save_model:
|
|
torch.save(model.state_dict(), os.path.join(gettempdir(), "mnist_cnn.pt"))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
app.run(main)
|