clearml/examples/frameworks/pytorch/pytorch_abseil.py

164 lines
5.2 KiB
Python

# Example of MNIST training with PyTorch and abseil integration
from __future__ import print_function
import os
from tempfile import gettempdir
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from absl import app, flags
from torchvision import datasets, transforms
from clearml import Task, Logger
# Training settings
FLAGS = flags.FLAGS
flags.DEFINE_integer("batch_size", 64, help="Batch size for training")
flags.DEFINE_integer("test_batch_size", 1000, help="Batch size for testing")
flags.DEFINE_integer("epochs", 10, help="Number of epochs to train")
flags.DEFINE_float("lr", 0.01, help="Learning rate")
flags.DEFINE_float("momentum", 0.5, help="SGD momentum")
flags.DEFINE_bool("cuda", True, help="Enable CUDA training")
flags.DEFINE_integer("seed", 1, help="Random seed")
flags.DEFINE_integer(
"log_interval", 10, help="How many batches to wait before logging training status"
)
flags.DEFINE_bool("save_model", True, help="For saving the current Model")
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 20, 5, 1)
self.conv2 = nn.Conv2d(20, 50, 5, 1)
self.fc1 = nn.Linear(4 * 4 * 50, 500)
self.fc2 = nn.Linear(500, 10)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.max_pool2d(x, 2, 2)
x = F.relu(self.conv2(x))
x = F.max_pool2d(x, 2, 2)
x = x.view(-1, 4 * 4 * 50)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return F.log_softmax(x, dim=1)
def train(args, model, device, train_loader, optimizer, epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % args.log_interval == 0:
Logger.current_logger().report_scalar(
"train",
"loss",
iteration=(epoch * len(train_loader) + batch_idx),
value=loss.item(),
)
print(
"Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}".format(
epoch,
batch_idx * len(data),
len(train_loader.dataset),
100.0 * batch_idx / len(train_loader),
loss.item(),
)
)
def test(args, model, device, test_loader, epoch):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += F.nll_loss(
output, target, reduction="sum"
).item() # sum up batch loss
pred = output.argmax(
dim=1, keepdim=True
) # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
Logger.current_logger().report_scalar(
"test", "loss", iteration=epoch, value=test_loss
)
Logger.current_logger().report_scalar(
"test", "accuracy", iteration=epoch, value=(correct / len(test_loader.dataset))
)
print(
"Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)".format(
test_loss,
correct,
len(test_loader.dataset),
100.0 * correct / len(test_loader.dataset),
)
)
def main(_):
# Connecting ClearML with the current process,
# from here on everything is logged automatically
task = Task.init(project_name="examples", task_name="PyTorch MNIST train with abseil")
use_cuda = FLAGS.cuda and torch.cuda.is_available()
torch.manual_seed(FLAGS.seed)
device = torch.device("cuda" if use_cuda else "cpu")
kwargs = {"num_workers": 4, "pin_memory": True} if use_cuda else {}
train_loader = torch.utils.data.DataLoader(
datasets.MNIST(
os.path.join("..", "data"),
train=True,
download=True,
transform=transforms.Compose(
[transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]
),
),
batch_size=FLAGS.batch_size,
shuffle=True,
**kwargs
)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST(
os.path.join("..", "data"),
train=False,
transform=transforms.Compose(
[transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]
),
),
batch_size=FLAGS.test_batch_size,
shuffle=True,
**kwargs
)
model = Net().to(device)
optimizer = optim.SGD(model.parameters(), lr=FLAGS.lr, momentum=FLAGS.momentum)
for epoch in range(1, FLAGS.epochs + 1):
train(FLAGS, model, device, train_loader, optimizer, epoch)
test(FLAGS, model, device, test_loader, epoch)
if FLAGS.save_model:
torch.save(model.state_dict(), os.path.join(gettempdir(), "mnist_cnn.pt"))
if __name__ == "__main__":
app.run(main)