clearml/trains/automation/hpbandster/bandster.py

326 lines
16 KiB
Python

from time import sleep, time
from typing import Any, Optional, Sequence
from ..optimization import Objective, SearchStrategy
from ..parameters import (
DiscreteParameterRange, UniformParameterRange, RandomSeed, UniformIntegerParameterRange, Parameter, )
from ...task import Task
try:
# noinspection PyPackageRequirements
from hpbandster.core.worker import Worker
# noinspection PyPackageRequirements
from hpbandster.optimizers import BOHB
# noinspection PyPackageRequirements
import hpbandster.core.nameserver as hpns
# noinspection PyPackageRequirements, PyPep8Naming
import ConfigSpace as CS
# noinspection PyPackageRequirements, PyPep8Naming
import ConfigSpace.hyperparameters as CSH
Task.add_requirements('hpbandster')
except ImportError:
raise ValueError("OptimizerBOHB requires 'hpbandster' package, it was not found\n"
"install with: pip install hpbandster")
class _TrainsBandsterWorker(Worker):
def __init__(
self,
*args, # type: Any
optimizer, # type: OptimizerBOHB
base_task_id, # type: str
queue_name, # type: str
objective, # type: Objective
sleep_interval=0, # type: float
budget_iteration_scale=1., # type: float
**kwargs # type: Any
):
# type: (...) -> _TrainsBandsterWorker
super(_TrainsBandsterWorker, self).__init__(*args, **kwargs)
self.optimizer = optimizer
self.base_task_id = base_task_id
self.queue_name = queue_name
self.objective = objective
self.sleep_interval = sleep_interval
self.budget_iteration_scale = budget_iteration_scale
self._current_job = None
def compute(self, config, budget, **kwargs):
# type: (dict, float, Any) -> dict
"""
Simple example for a compute function
The loss is just a the config + some noise (that decreases with the budget)
For dramatization, the function can sleep for a given interval to emphasizes
the speed ups achievable with parallel workers.
Args:
config: dictionary containing the sampled configurations by the optimizer
budget: (float) amount of time/epochs/etc. the model can use to train.
We assume budget is iteration, as time might not be stable from machine to machine.
Returns:
dictionary with mandatory fields:
'loss' (scalar)
'info' (dict)
"""
self._current_job = self.optimizer.helper_create_job(self.base_task_id, parameter_override=config)
# noinspection PyProtectedMember
self.optimizer._current_jobs.append(self._current_job)
self._current_job.launch(self.queue_name)
iteration_value = None
while not self._current_job.is_stopped():
# noinspection PyProtectedMember
iteration_value = self.optimizer._objective_metric.get_current_raw_objective(self._current_job)
if iteration_value and iteration_value[0] >= self.budget_iteration_scale * budget:
self._current_job.abort()
break
sleep(self.sleep_interval)
result = {
# this is the a mandatory field to run hyperband
# remember: HpBandSter always minimizes!
'loss': float(self.objective.get_normalized_objective(self._current_job) * -1.),
# can be used for any user-defined information - also mandatory
'info': self._current_job.task_id()
}
print('TrainsBandsterWorker result {}, iteration {}'.format(result, iteration_value))
# noinspection PyProtectedMember
self.optimizer._current_jobs.remove(self._current_job)
return result
class OptimizerBOHB(SearchStrategy, RandomSeed):
def __init__(
self,
base_task_id, # type: str
hyper_parameters, # type: Sequence[Parameter]
objective_metric, # type: Objective
execution_queue, # type: str
num_concurrent_workers, # type: int
min_iteration_per_job, # type: Optional[int]
max_iteration_per_job, # type: Optional[int]
total_max_jobs, # type: Optional[int]
pool_period_min=2., # type: float
max_job_execution_minutes=None, # type: Optional[float]
local_port=9090, # type: int
**bohb_kwargs, # type: Any
):
# type: (...) -> OptimizerBOHB
"""
Initialize a BOHB search strategy optimizer
BOHB performs robust and efficient hyperparameter optimization at scale by combining
the speed of Hyperband searches with the guidance and guarantees of convergence of Bayesian
Optimization. Instead of sampling new configurations at random,
BOHB uses kernel density estimators to select promising candidates.
For reference: ::
@InProceedings{falkner-icml-18,
title = {{BOHB}: Robust and Efficient Hyperparameter Optimization at Scale},
author = {Falkner, Stefan and Klein, Aaron and Hutter, Frank},
booktitle = {Proceedings of the 35th International Conference on Machine Learning},
pages = {1436--1445},
year = {2018},
}
:param str base_task_id: Task ID (str)
:param list hyper_parameters: list of Parameter objects to optimize over
:param Objective objective_metric: Objective metric to maximize / minimize
:param str execution_queue: execution queue to use for launching Tasks (experiments).
:param int num_concurrent_workers: Limit number of concurrent running Tasks (machines)
:param int min_iteration_per_job: minimum number of iterations for a job to run.
'iterations' are the reported iterations for the specified objective,
not the maximum reported iteration of the Task.
:param int max_iteration_per_job: number of iteration per job
'iterations' are the reported iterations for the specified objective,
not the maximum reported iteration of the Task.
:param int total_max_jobs: total maximum job for the optimization process.
Must be provided in order to calculate the total budget for the optimization process.
The total budget is measured by "iterations" (see above)
and will be set to `max_iteration_per_job * total_max_jobs`
This means more than total_max_jobs could be created, as long as the cumulative iterations
(summed over all created jobs) will not exceed `max_iteration_per_job * total_max_jobs`
:param float pool_period_min: time in minutes between two consecutive pools
:param float max_job_execution_minutes: maximum time per single job in minutes, if exceeded job is aborted
:param int local_port: default port 9090 tcp, this is a must for the BOHB workers to communicate, even locally.
:param bohb_kwargs: arguments passed directly yo the BOHB object
"""
super(OptimizerBOHB, self).__init__(
base_task_id=base_task_id, hyper_parameters=hyper_parameters, objective_metric=objective_metric,
execution_queue=execution_queue, num_concurrent_workers=num_concurrent_workers,
pool_period_min=pool_period_min, max_job_execution_minutes=max_job_execution_minutes,
total_max_jobs=total_max_jobs)
self._max_iteration_per_job = max_iteration_per_job
self._min_iteration_per_job = min_iteration_per_job
self._bohb_kwargs = bohb_kwargs or {}
self._param_iterator = None
self._namespace = None
self._bohb = None
self._res = None
self._nameserver_port = local_port
def set_optimization_args(
self,
eta=3, # type: float
min_budget=None, # type: Optional[float]
max_budget=None, # type: Optional[float]
min_points_in_model=None, # type: Optional[int]
top_n_percent=15, # type: Optional[int]
num_samples=None, # type: Optional[int]
random_fraction=1 / 3., # type: Optional[float]
bandwidth_factor=3, # type: Optional[float]
min_bandwidth=1e-3, # type: Optional[float]
):
# type: (...) -> ()
"""
Defaults copied from BOHB constructor, see details in BOHB.__init__
BOHB performs robust and efficient hyperparameter optimization
at scale by combining the speed of Hyperband searches with the
guidance and guarantees of convergence of Bayesian
Optimization. Instead of sampling new configurations at random,
BOHB uses kernel density estimators to select promising candidates.
.. highlight:: none
For reference: ::
@InProceedings{falkner-icml-18,
title = {{BOHB}: Robust and Efficient Hyperparameter Optimization at Scale},
author = {Falkner, Stefan and Klein, Aaron and Hutter, Frank},
booktitle = {Proceedings of the 35th International Conference on Machine Learning},
pages = {1436--1445},
year = {2018},
}
Parameters
----------
eta : float (3)
In each iteration, a complete run of sequential halving is executed. In it,
after evaluating each configuration on the same subset size, only a fraction of
1/eta of them 'advances' to the next round.
Must be greater or equal to 2.
min_budget : float (0.01)
The smallest budget to consider. Needs to be positive!
max_budget : float (1)
The largest budget to consider. Needs to be larger than min_budget!
The budgets will be geometrically distributed
:math:`a^2 + b^2 = c^2 /sim /eta^k` for :math:`k/in [0, 1, ... , num/_subsets - 1]`.
min_points_in_model: int (None)
number of observations to start building a KDE. Default 'None' means
dim+1, the bare minimum.
top_n_percent: int (15)
percentage ( between 1 and 99, default 15) of the observations that are considered good.
num_samples: int (64)
number of samples to optimize EI (default 64)
random_fraction: float (1/3.)
fraction of purely random configurations that are sampled from the
prior without the model.
bandwidth_factor: float (3.)
to encourage diversity, the points proposed to optimize EI, are sampled
from a 'widened' KDE where the bandwidth is multiplied by this factor (default: 3)
min_bandwidth: float (1e-3)
to keep diversity, even when all (good) samples have the same value for one of the parameters,
a minimum bandwidth (Default: 1e-3) is used instead of zero.
"""
if min_budget:
self._bohb_kwargs['min_budget'] = min_budget
if max_budget:
self._bohb_kwargs['max_budget'] = max_budget
if num_samples:
self._bohb_kwargs['num_samples'] = num_samples
self._bohb_kwargs['eta'] = eta
self._bohb_kwargs['min_points_in_model'] = min_points_in_model
self._bohb_kwargs['top_n_percent'] = top_n_percent
self._bohb_kwargs['random_fraction'] = random_fraction
self._bohb_kwargs['bandwidth_factor'] = bandwidth_factor
self._bohb_kwargs['min_bandwidth'] = min_bandwidth
def start(self):
# type: () -> ()
"""
Start the Optimizer controller function loop()
If the calling process is stopped, the controller will stop as well.
Notice: This function returns only after optimization is completed! or stop() was called.
"""
# Step 1: Start a NameServer
fake_run_id = 'OptimizerBOHB_{}'.format(time())
# default port is 9090, we must have one, this is how BOHB workers communicate (even locally)
self._namespace = hpns.NameServer(run_id=fake_run_id, host='127.0.0.1', port=self._nameserver_port)
self._namespace.start()
# we have to scale the budget to the iterations per job, otherwise numbers might be too high
budget_iteration_scale = self._max_iteration_per_job
# Step 2: Start the workers
workers = []
for i in range(self._num_concurrent_workers):
w = _TrainsBandsterWorker(
optimizer=self,
sleep_interval=int(self.pool_period_minutes * 60),
budget_iteration_scale=budget_iteration_scale,
base_task_id=self._base_task_id,
objective=self._objective_metric,
queue_name=self._execution_queue,
nameserver='127.0.0.1', nameserver_port=self._nameserver_port, run_id=fake_run_id, id=i)
w.run(background=True)
workers.append(w)
# Step 3: Run an optimizer
self._bohb = BOHB(configspace=self._convert_hyper_parameters_to_cs(),
run_id=fake_run_id,
num_samples=self.total_max_jobs,
min_budget=float(self._min_iteration_per_job) / float(self._max_iteration_per_job),
**self._bohb_kwargs)
self._res = self._bohb.run(n_iterations=self.total_max_jobs, min_n_workers=self._num_concurrent_workers)
# Step 4: if we get here, Shutdown
self.stop()
def stop(self):
# type: () -> ()
"""
Stop the current running optimization loop,
Called from a different thread than the start()
"""
# After the optimizer run, we must shutdown the master and the nameserver.
self._bohb.shutdown(shutdown_workers=True)
self._namespace.shutdown()
if not self._res:
return
# Step 5: Analysis
id2config = self._res.get_id2config_mapping()
incumbent = self._res.get_incumbent_id()
all_runs = self._res.get_all_runs()
# Step 6: Print Analysis
print('Best found configuration:', id2config[incumbent]['config'])
print('A total of {} unique configurations where sampled.'.format(len(id2config.keys())))
print('A total of {} runs where executed.'.format(len(self._res.get_all_runs())))
print('Total budget corresponds to {:.1f} full function evaluations.'.format(
sum([r.budget for r in all_runs]) / self._bohb_kwargs.get('max_budget', 1.0)))
print('Total budget corresponds to {:.1f} full function evaluations.'.format(
sum([r.budget for r in all_runs]) / self._bohb_kwargs.get('max_budget', 1.0)))
print('The run took {:.1f} seconds to complete.'.format(
all_runs[-1].time_stamps['finished'] - all_runs[0].time_stamps['started']))
def _convert_hyper_parameters_to_cs(self):
# type: () -> CS.ConfigurationSpace
cs = CS.ConfigurationSpace(seed=self._seed)
for p in self._hyper_parameters:
if isinstance(p, UniformParameterRange):
hp = CSH.UniformFloatHyperparameter(
p.name, lower=p.min_value, upper=p.max_value, log=False, q=p.step_size)
elif isinstance(p, UniformIntegerParameterRange):
hp = CSH.UniformIntegerHyperparameter(
p.name, lower=p.min_value, upper=p.max_value, log=False, q=p.step_size)
elif isinstance(p, DiscreteParameterRange):
hp = CSH.CategoricalHyperparameter(p.name, choices=p.values)
else:
raise ValueError("HyperParameter type {} not supported yet with OptimizerBOHB".format(type(p)))
cs.add_hyperparameter(hp)
return cs