clearml/examples/distributed/subprocess_example.py
2023-04-30 15:23:30 +03:00

96 lines
3.7 KiB
Python

# ClearML - example of multiple sub-processes interacting and reporting to a single master experiment
import multiprocessing
import os
import subprocess
import sys
import time
from argparse import ArgumentParser
from random import randint
from clearml import Task
def mp_worker(arguments):
print('sub process', os.getpid())
data, extra_dict = arguments
inputs, the_time = data
Task.current_task().connect(extra_dict)
print(" Process %s\tWaiting %s seconds" % (inputs, the_time))
time.sleep(int(the_time))
print(" Process %s\tDONE" % inputs)
def mp_handler(use_subprocess, data, additional_parameters):
if use_subprocess:
process = multiprocessing.Pool(4)
else:
process = multiprocessing.pool.ThreadPool(4)
process.map(mp_worker, zip(data, additional_parameters))
process.close()
print('DONE main !!!')
if __name__ == '__main__':
parser = ArgumentParser()
parser.add_argument('--num-workers', help='integer value', type=int, default=3)
parser.add_argument('--use-subprocess', help="Use sub processes", dest='subprocess', action='store_true')
parser.add_argument('--no-subprocess', help="Use threads", dest='subprocess', action='store_false')
parser.add_argument('--additional-parameters', help='task parameters', type=str, nargs="+")
parser.set_defaults(subprocess=True)
# this argument we will not be logging, see below Task.init
parser.add_argument('--counter', help='integer value', type=int, default=-1)
args = parser.parse_args()
print(os.getpid(), 'ARGS:', args)
# Fake data for us to "process"
data = (
['a', '2'], ['b', '4'], ['c', '6'], ['d', '8'],
['e', '1'], ['f', '3'], ['g', '5'], ['h', '7'],
)
if not args.additional_parameters:
# Random task parameters
args.additional_parameters = [
f"stuff_{str(randint(0, 100))}:some stuff {str(randint(0, 100))}" for _ in range(len(data))]
task_parameters = (dict([p.partition(":")[::2]]) for p in args.additional_parameters)
# We have to initialize the task in the master process,
# it will make sure that any sub-process calling Task.init will get the master task object
# notice that we exclude the `counter` argument, so we can launch multiple sub-processes with clearml-agent
# otherwise, the `counter` will always be set to the original value.
task = Task.init('examples', 'Popen example', auto_connect_arg_parser={'counter': False})
# we can connect multiple dictionaries, each from different process, as long as the keys have different names
param = {'args_{}'.format(args.num_workers): 'some value {}'.format(args.num_workers)}
task.connect(param)
# check if we need to start the process, meaning counter is negative
counter = args.num_workers if args.counter < 0 else args.counter
p = None
# launch sub-process, every subprocess will launch the next in the chain, until we launch them all.
# We could also launch all of them here, but that would have been to simple for us J
if counter > 0:
cmd = [sys.executable, sys.argv[0],
'--counter', str(counter - 1),
'--num-workers', str(args.num_workers),
'--use-subprocess' if args.subprocess else '--no-subprocess',
'--additional-parameters', *args.additional_parameters]
print(cmd)
p = subprocess.Popen(cmd, cwd=os.getcwd())
# the actual "processing" is done here
mp_handler(args.subprocess, data, task_parameters)
print('Done logging')
# wait for the process we launched
# this means every subprocess will be waiting for the process it launched and
# the master process will exit after all of them are completed
if p and counter > 0:
p.wait()
print('Exiting')