clearml/examples/automl/automl_random_search_example.py
2019-10-27 00:32:23 +03:00

46 lines
1.7 KiB
Python

from random import random, sample
from trains import Task
# define random search space,
# This is a simple random search
# (can be integrated with 'bayesian-optimization' 'hpbandster' etc.)
space = {
'batch_size': lambda: sample([64, 96, 128, 160, 192], 1)[0],
'layer_1': lambda: sample(range(128, 512, 32), 1)[0],
'layer_2': lambda: sample(range(128, 512, 32), 1)[0],
}
# number of random samples to test from 'space'
total_number_of_experiments = 3
# execution queue to add experiments to
execution_queue_name = 'default'
# Select base template task
# Notice we can be more imaginative and use task_id which will eliminate the need to use project name
template_task = Task.get_task(project_name='examples', task_name='Keras AutoML base')
for i in range(total_number_of_experiments):
# clone the template task into a new write enabled task (where we can change parameters)
cloned_task = Task.clone(source_task=template_task,
name=template_task.name+' {}'.format(i), parent=template_task.id)
# get the original template parameters
cloned_task_parameters = cloned_task.get_parameters()
# override with random samples form grid
for k in space.keys():
cloned_task_parameters[k] = space[k]()
# put back into the new cloned task
cloned_task.set_parameters(cloned_task_parameters)
print('Experiment {} set with parameters {}'.format(i, cloned_task_parameters))
# enqueue the task for execution
Task.enqueue(cloned_task.id, queue_name=execution_queue_name)
print('Experiment id={} enqueue for execution'.format(cloned_task.id))
# we are done, the next step is to watch the experiments graphs
print('Done')