clearml/trains/automation/parameters.py

302 lines
10 KiB
Python

import sys
from itertools import product
from random import Random as BaseRandom
from typing import Mapping, Any, Sequence, Optional, Union
class RandomSeed(object):
"""
Base class controlling random sampling for every optimization strategy
"""
_random = BaseRandom(1337)
_seed = 1337
@staticmethod
def set_random_seed(seed=1337):
# type: (int) -> ()
"""
Set global seed for all hyper parameter strategy random number sampling
:param int seed: random seed
"""
RandomSeed._seed = seed
RandomSeed._random = BaseRandom(seed)
@staticmethod
def get_random_seed():
# type: () -> int
"""
Get the global seed for all hyper parameter strategy random number sampling
:return int: random seed
"""
return RandomSeed._seed
class Parameter(RandomSeed):
"""
Base Hyper-Parameter optimization object
"""
def __init__(self, name):
# type: (Optional[str]) -> ()
"""
Create a new Parameter for hyper-parameter optimization
:param str name: give a name to the parameter, this is the parameter name that will be passed to a Task
"""
self.name = name
def get_value(self):
# type: () -> Mapping[str, Any]
"""
Return a dict with the Parameter name and a sampled value for the Parameter
:return dict: example, {'answer': 0.42}
"""
pass
def to_list(self):
# type: () -> Sequence[Mapping[str, Any]]
"""
Return a list of all the valid values of the Parameter
:return list: list of dicts {name: value}
"""
pass
def to_dict(self):
# type: () -> Mapping[str, Union[str, Parameter]]
"""
Return a dict representation of the parameter object. Used for serialization of the Parameter object.
:return dict: dict representation of the object (serialization)
"""
serialize = {'__class__': str(self.__class__).split('.')[-1][:-2]}
# noinspection PyCallingNonCallable
serialize.update(dict(((k, v.to_dict() if hasattr(v, 'to_dict') else v) for k, v in self.__dict__.items())))
return serialize
@classmethod
def from_dict(cls, a_dict):
# type: (Mapping[str, str]) -> Parameter
"""
Construct parameter object from a dict representation (deserialize from dict)
:return Parameter: Parameter object
"""
a_dict = a_dict.copy()
a_cls = a_dict.pop('__class__', None)
if not a_cls:
return None
try:
a_cls = getattr(sys.modules[__name__], a_cls)
except AttributeError:
return None
instance = a_cls.__new__(a_cls)
instance.__dict__ = dict((k, cls.from_dict(v) if isinstance(v, dict) and '__class__' in v else v)
for k, v in a_dict.items())
return instance
class UniformParameterRange(Parameter):
"""
Uniform randomly sampled Hyper-Parameter object
"""
def __init__(
self,
name, # type: str
min_value, # type: float
max_value, # type: float
step_size=None, # type: Optional[float]
include_max_value=True # type: bool
):
# type: (...) -> ()
"""
Create a parameter to be sampled by the SearchStrategy
:param str name: parameter name, should match task hyper-parameter name
:param float min_value: minimum sample to use for uniform random sampling
:param float max_value: maximum sample to use for uniform random sampling
:param float step_size: If not None, set step size (quantization) for value sampling
:param bool include_max_value: if True range includes the max_value (default True)
"""
super(UniformParameterRange, self).__init__(name=name)
self.min_value = float(min_value)
self.max_value = float(max_value)
self.step_size = float(step_size) if step_size is not None else None
self.include_max = include_max_value
def get_value(self):
# type: () -> Mapping[str, Any]
"""
Return uniformly sampled value based on object sampling definitions
:return dict: {self.name: random value [self.min_value, self.max_value)}
"""
if not self.step_size:
return {self.name: self._random.uniform(self.min_value, self.max_value)}
steps = (self.max_value - self.min_value) / self.step_size
return {self.name: self.min_value + (self._random.randrange(start=0, stop=round(steps)) * self.step_size)}
def to_list(self):
# type: () -> Sequence[Mapping[str, float]]
"""
Return a list of all the valid values of the Parameter
if self.step_size is not defined, return 100 points between minmax values
:return list: list of dicts {name: float}
"""
step_size = self.step_size or (self.max_value - self.min_value) / 100.
steps = (self.max_value - self.min_value) / self.step_size
values = [v*step_size for v in range(0, int(steps))]
if self.include_max and (not values or values[-1] < self.max_value):
values.append(self.max_value)
return [{self.name: v} for v in values]
class UniformIntegerParameterRange(Parameter):
"""
Uniform randomly sampled integer Hyper-Parameter object
"""
def __init__(self, name, min_value, max_value, step_size=1, include_max_value=True):
# type: (str, int, int, int, bool) -> ()
"""
Create a parameter to be sampled by the SearchStrategy
:param str name: parameter name, should match task hyper-parameter name
:param int min_value: minimum sample to use for uniform random sampling
:param int max_value: maximum sample to use for uniform random sampling
:param int step_size: Default step size is 1
:param bool include_max_value: if True range includes the max_value (default True)
"""
super(UniformIntegerParameterRange, self).__init__(name=name)
self.min_value = int(min_value)
self.max_value = int(max_value)
self.step_size = int(step_size) if step_size is not None else None
self.include_max = include_max_value
def get_value(self):
# type: () -> Mapping[str, Any]
"""
Return uniformly sampled value based on object sampling definitions
:return dict: {self.name: random value [self.min_value, self.max_value)}
"""
return {self.name: self._random.randrange(
start=self.min_value, step=self.step_size,
stop=self.max_value + (0 if not self.include_max else self.step_size))}
def to_list(self):
# type: () -> Sequence[Mapping[str, int]]
"""
Return a list of all the valid values of the Parameter
if self.step_size is not defined, return 100 points between minmax values
:return list: list of dicts {name: int}
"""
values = list(range(self.min_value, self.max_value, self.step_size))
if self.include_max and (not values or values[-1] < self.max_value):
values.append(self.max_value)
return [{self.name: v} for v in values]
class DiscreteParameterRange(Parameter):
"""
Discrete randomly sampled Hyper-Parameter object
"""
def __init__(self, name, values=()):
# type: (str, Sequence[Any]) -> ()
"""
Uniformly sample values form a list of discrete options
:param str name: parameter name, should match task hyper-parameter name
:param list values: list/tuple of valid parameter values to sample from
"""
super(DiscreteParameterRange, self).__init__(name=name)
self.values = values
def get_value(self):
# type: () -> Mapping[str, Any]
"""
Return uniformly sampled value from the valid list of values
:return dict: {self.name: random entry from self.value}
"""
return {self.name: self._random.choice(self.values)}
def to_list(self):
# type: () -> Sequence[Mapping[str, Any]]
"""
Return a list of all the valid values of the Parameter
:return list: list of dicts {name: value}
"""
return [{self.name: v} for v in self.values]
class ParameterSet(Parameter):
"""
Discrete randomly sampled Hyper-Parameter object
"""
def __init__(self, parameter_combinations=()):
# type: (Sequence[Mapping[str, Union[float, int, str, Parameter]]]) -> ()
"""
Uniformly sample values form a list of discrete options (combinations) of parameters
:param list parameter_combinations: list/tuple of valid parameter combinations,
Example: two combinations with three specific parameters per combination:
[ {'opt1': 10, 'arg2': 20, 'arg2': 30},
{'opt2': 11, 'arg2': 22, 'arg2': 33}, ]
Example: Two complex combination each one sampled from a different range
[ {'opt1': UniformParameterRange('arg1',0,1) , 'arg2': 20},
{'opt2': UniformParameterRange('arg1',11,12), 'arg2': 22},]
"""
super(ParameterSet, self).__init__(name=None)
self.values = parameter_combinations
def get_value(self):
# type: () -> Mapping[str, Any]
"""
Return uniformly sampled value from the valid list of values
:return dict: {self.name: random entry from self.value}
"""
return self._get_value(self._random.choice(self.values))
def to_list(self):
# type: () -> Sequence[Mapping[str, Any]]
"""
Return a list of all the valid values of the Parameter
:return list: list of dicts {name: value}
"""
combinations = []
for combination in self.values:
single_option = {}
for k, v in combination.items():
if isinstance(v, Parameter):
single_option[k] = v.to_list()
else:
single_option[k] = [{k: v}, ]
for state in product(*single_option.values()):
combinations.append(dict(kv for d in state for kv in d.items()))
return combinations
@staticmethod
def _get_value(combination):
# type: (dict) -> dict
value_dict = {}
for k, v in combination.items():
if isinstance(v, Parameter):
value_dict.update(v.get_value())
else:
value_dict[k] = v
return value_dict