mirror of
https://github.com/clearml/clearml
synced 2025-01-31 09:07:00 +00:00
78 lines
2.6 KiB
Python
78 lines
2.6 KiB
Python
"""Keras Tuner CIFAR10 example for the TensorFlow blog post."""
|
|
|
|
import keras_tuner as kt
|
|
import tensorflow as tf
|
|
import tensorflow_datasets as tfds
|
|
from clearml.external.kerastuner import ClearmlTunerLogger
|
|
|
|
from clearml import Task
|
|
|
|
physical_devices = tf.config.list_physical_devices('GPU')
|
|
if physical_devices:
|
|
tf.config.experimental.set_visible_devices(physical_devices[0], 'GPU')
|
|
tf.config.experimental.set_memory_growth(physical_devices[0], True)
|
|
|
|
|
|
def build_model(hp):
|
|
inputs = tf.keras.Input(shape=(32, 32, 3))
|
|
x = inputs
|
|
for i in range(hp.Int('conv_blocks', 3, 5, default=3)):
|
|
filters = hp.Int('filters_' + str(i), 32, 256, step=32)
|
|
for _ in range(2):
|
|
x = tf.keras.layers.Convolution2D(
|
|
filters, kernel_size=(3, 3), padding='same')(x)
|
|
x = tf.keras.layers.BatchNormalization()(x)
|
|
x = tf.keras.layers.ReLU()(x)
|
|
if hp.Choice('pooling_' + str(i), ['avg', 'max']) == 'max':
|
|
x = tf.keras.layers.MaxPool2D()(x)
|
|
else:
|
|
x = tf.keras.layers.AvgPool2D()(x)
|
|
x = tf.keras.layers.GlobalAvgPool2D()(x)
|
|
x = tf.keras.layers.Dense(
|
|
hp.Int('hidden_size', 30, 100, step=10, default=50),
|
|
activation='relu')(x)
|
|
x = tf.keras.layers.Dropout(
|
|
hp.Float('dropout', 0, 0.5, step=0.1, default=0.5))(x)
|
|
outputs = tf.keras.layers.Dense(10, activation='softmax')(x)
|
|
|
|
model = tf.keras.Model(inputs, outputs)
|
|
model.compile(
|
|
optimizer=tf.keras.optimizers.Adam(
|
|
hp.Float('learning_rate', 1e-4, 1e-2, sampling='log')),
|
|
loss='sparse_categorical_crossentropy',
|
|
metrics=['accuracy'])
|
|
return model
|
|
|
|
|
|
# Connecting ClearML with the current process,
|
|
# from here on everything is logged automatically
|
|
task = Task.init('examples', 'kerastuner cifar10 tuning')
|
|
|
|
tuner = kt.Hyperband(
|
|
build_model,
|
|
project_name='kt examples',
|
|
logger=ClearmlTunerLogger(),
|
|
objective='val_accuracy',
|
|
max_epochs=10,
|
|
hyperband_iterations=6)
|
|
|
|
data = tfds.load('cifar10')
|
|
train_ds, test_ds = data['train'], data['test']
|
|
|
|
|
|
def standardize_record(record):
|
|
return tf.cast(record['image'], tf.float32) / 255., record['label']
|
|
|
|
|
|
train_ds = train_ds.map(standardize_record).cache().batch(64).shuffle(10000)
|
|
test_ds = test_ds.map(standardize_record).cache().batch(64)
|
|
|
|
tuner.search(train_ds,
|
|
validation_data=test_ds,
|
|
callbacks=[tf.keras.callbacks.EarlyStopping(patience=1),
|
|
tf.keras.callbacks.TensorBoard(),
|
|
])
|
|
|
|
best_model = tuner.get_best_models(1)[0]
|
|
best_hyperparameters = tuner.get_best_hyperparameters(1)[0]
|