# ClearML - Example of Matplotlib and Seaborn integration and reporting # import numpy as np import matplotlib.pyplot as plt import seaborn as sns from clearml import Task # Connecting ClearML with the current process, # from here on everything is logged automatically # Create a new task, disable automatic matplotlib connect task = Task.init( project_name="examples", task_name="Manual Matplotlib example", auto_connect_frameworks={"matplotlib": False}, ) # Create plot and explicitly report as figure N = 50 x = np.random.rand(N) y = np.random.rand(N) colors = np.random.rand(N) area = (30 * np.random.rand(N))**2 # 0 to 15 point radii plt.scatter(x, y, s=area, c=colors, alpha=0.5) task.logger.report_matplotlib_figure( title="Manual Reporting", series="Just a plot", iteration=0, figure=plt ) # Show the plot plt.show() # Create plot and explicitly report as an image plt.scatter(x, y, s=area, c=colors, alpha=0.5) task.logger.report_matplotlib_figure( title="Manual Reporting", series="Plot as an image", iteration=0, figure=plt, report_image=True, ) # Show the plot plt.show() # Create image plot m = np.eye(256, 256, dtype=np.uint8) plt.imshow(m) # Report plot task.logger.report_matplotlib_figure( title="Manual Reporting", series="Image plot", iteration=0, figure=plt, report_interactive=False, ) # Show plot plt.show() # Create Seaborn plot sns.set(style="darkgrid") # Load an example dataset with long-form data fmri = sns.load_dataset("fmri") # Plot the responses for different events and regions sns.lineplot(x="timepoint", y="signal", hue="region", style="event", data=fmri) # Report plot task.logger.report_matplotlib_figure( title="Seaborn example", series="My Plot Series 4", iteration=10, figure=plt, report_interactive=False, ) # Show plot plt.show() print("This is a Matplotlib & Seaborn example")