from pathlib import Path import matplotlib.pyplot as plt import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torchvision.datasets as datasets import torchvision.transforms as transforms from ignite.contrib.handlers import TensorboardLogger from ignite.engine import Events, create_supervised_trainer, create_supervised_evaluator from ignite.handlers import global_step_from_engine from ignite.metrics import Accuracy, Loss, Recall from ignite.utils import setup_logger from torch.utils.tensorboard import SummaryWriter from tqdm import tqdm from clearml import Task, StorageManager, OutputModel def main(): # Connecting ClearML with the current process, # from here on everything is logged automatically task = Task.init( project_name="examples", task_name="Model update pytorch", auto_connect_frameworks={"pytorch": False}, ) params = { "number_of_epochs": 1, "batch_size": 64, "dropout": 0.25, "base_lr": 0.001, "momentum": 0.9, "loss_report": 100, } params = task.connect(params) # enabling configuration override by clearml print(params) # printing actual configuration (after override in remote mode) model = OutputModel(task=task, framework="pytorch") model_config_dict = { "list_of_ints": [1, 2, 3, 4], "dict": { "sub_value": "string", "sub_integer": 11 }, "value": 13.37 } model.update_design(config_dict=model_config_dict) manager = StorageManager() dataset_path = Path( manager.get_local_copy( remote_url="https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz" ) ) # Dataset and Dataloader initializations transform = transforms.Compose([transforms.ToTensor()]) trainset = datasets.CIFAR10( root=dataset_path, train=True, download=False, transform=transform ) trainloader = torch.utils.data.DataLoader( trainset, batch_size=params.get("batch_size", 4), shuffle=True, num_workers=10 ) testset = datasets.CIFAR10( root=dataset_path, train=False, download=False, transform=transform ) testloader = torch.utils.data.DataLoader( testset, batch_size=params.get("batch_size", 4), shuffle=False, num_workers=10 ) run( params["number_of_epochs"], params["base_lr"], params["momentum"], 10, params, trainloader, testloader, model, ) # Helper function to store predictions and scores using matplotlib def predictions_gt_images_handler(engine, logger, *args, **kwargs): x, _ = engine.state.batch y_pred, y = engine.state.output num_x = num_y = 4 le = num_x * num_y fig = plt.figure(figsize=(20, 20)) trans = transforms.ToPILImage() classes = ( "plane", "car", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck", ) enumeration = {k: v for v, k in enumerate(classes, 1)} Task.current_task().connect_label_enumeration(enumeration) for idx in range(le): preds = torch.argmax(F.softmax(y_pred[idx], dim=0)) probs = torch.max(F.softmax(y_pred[idx], dim=0)) ax = fig.add_subplot(num_x, num_y, idx + 1, xticks=[], yticks=[]) ax.imshow(trans(x[idx])) ax.set_title( "{0} {1:.1f}% (label: {2})".format( classes[preds], probs * 100, classes[y[idx]] ), color=("green" if preds == y[idx] else "red"), ) logger.writer.add_figure( "predictions vs actuals", figure=fig, global_step=engine.state.epoch ) class Net(nn.Module): def __init__(self, params): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 6, 3) self.conv2 = nn.Conv2d(6, 16, 3) self.pool = nn.MaxPool2d(2, 2) self.fc1 = nn.Linear(16 * 6 * 6, 120) self.fc2 = nn.Linear(120, 84) self.dorpout = nn.Dropout(p=params.get("dropout", 0.25)) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = x.view(-1, 16 * 6 * 6) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(self.dorpout(x)) return x # Training def run(epochs, lr, momentum, log_interval, params, trainloader, testloader, model): device = "cuda" if torch.cuda.is_available() else "cpu" net = Net(params).to(device) criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=lr, momentum=momentum) trainer = create_supervised_trainer(net, optimizer, criterion, device=device) trainer.logger = setup_logger("trainer") val_metrics = {"accuracy": Accuracy(), "loss": Loss(criterion), "recall": Recall()} evaluator = create_supervised_evaluator(net, metrics=val_metrics, device=device) evaluator.logger = setup_logger("evaluator") # Attach handler to plot trainer's loss every 100 iterations tb_logger = TensorboardLogger(log_dir="cifar-output") tb_logger.attach_output_handler( trainer, event_name=Events.ITERATION_COMPLETED(every=params.get("loss_report")), tag="training", output_transform=lambda loss: {"loss": loss}, ) # Attach handler to dump evaluator's metrics every epoch completed for tag, evaluator in [("training", trainer), ("validation", evaluator)]: tb_logger.attach_output_handler( evaluator, event_name=Events.EPOCH_COMPLETED, tag=tag, metric_names="all", global_step_transform=global_step_from_engine(trainer), ) # Attach function to build debug images and report every epoch end tb_logger.attach( evaluator, log_handler=predictions_gt_images_handler, event_name=Events.EPOCH_COMPLETED(once=1), ) desc = "ITERATION - loss: {:.2f}" pbar = tqdm(initial=0, leave=False, total=len(trainloader), desc=desc.format(0)) @trainer.on(Events.ITERATION_COMPLETED(every=log_interval)) def log_training_loss(engine): pbar.desc = desc.format(engine.state.output) pbar.update(log_interval) @trainer.on(Events.EPOCH_COMPLETED) def log_training_results(engine): pbar.refresh() evaluator.run(trainloader) metrics = evaluator.state.metrics avg_accuracy = metrics["accuracy"] avg_nll = metrics["loss"] tqdm.write( "Training Results - Epoch: {} Avg accuracy: {:.2f} Avg loss: {:.2f}".format( engine.state.epoch, avg_accuracy, avg_nll ) ) @trainer.on(Events.EPOCH_COMPLETED) def log_validation_results(engine): evaluator.run(testloader) metrics = evaluator.state.metrics avg_accuracy = metrics["accuracy"] avg_nll = metrics["loss"] tqdm.write( "Validation Results - Epoch: {} Avg accuracy: {:.2f} Avg loss: {:.2f}".format( engine.state.epoch, avg_accuracy, avg_nll ) ) pbar.n = pbar.last_print_n = 0 @trainer.on(Events.EPOCH_COMPLETED | Events.COMPLETED) def log_time(): tqdm.write( "{} took {} seconds".format( trainer.last_event_name.name, trainer.state.times[trainer.last_event_name.name], ) ) trainer.run(trainloader, max_epochs=epochs) pbar.close() PATH = "./cifar_net.pth" # CONDITION depicts a custom condition for when to save the model. The model is saved and then updated in ClearML CONDITION = True if CONDITION: torch.save(net.state_dict(), PATH) model.update_weights(weights_filename=PATH) print("Finished Training") print("Task ID number is: {}".format(Task.current_task().id)) if __name__ == "__main__": main()