# TRAINS - Example of manual model configuration # import torch from trains import Task task = Task.init(project_name='examples', task_name='Manual model configuration') # create a model model = torch.nn.Module # store dictionary of definition for a specific network design model_config_dict = { 'value': 13.37, 'dict': {'sub_value': 'string'}, 'list_of_ints': [1, 2, 3, 4], } task.set_model_config(config_dict=model_config_dict) # or read form a config file (this will override the previous configuration dictionary) # task.set_model_config(config_text='this is just a blob\nof text from a configuration file') # store the label enumeration the model is training for task.set_model_label_enumeration({'background': 0, 'cat': 1, 'dog': 2}) print('Any model stored from this point onwards, will contain both model_config and label_enumeration') # storing the model, it will have the task network configuration and label enumeration torch.save(model, '/tmp/model') print('Model saved')