import sys import six from pathlib2 import Path from ..frameworks.base_bind import PatchBaseModelIO from ..frameworks import _patched_call, WeightsFileHandler, _Empty from ..import_bind import PostImportHookPatching from ...config import running_remotely from ...model import Framework class PatchXGBoostModelIO(PatchBaseModelIO): __main_task = None __patched = None @staticmethod def update_current_task(task, **kwargs): PatchXGBoostModelIO.__main_task = task PatchXGBoostModelIO._patch_model_io() PostImportHookPatching.add_on_import('xgboost', PatchXGBoostModelIO._patch_model_io) @staticmethod def _patch_model_io(): if PatchXGBoostModelIO.__patched: return if 'xgboost' not in sys.modules: return PatchXGBoostModelIO.__patched = True try: import xgboost as xgb bst = xgb.Booster bst.save_model = _patched_call(bst.save_model, PatchXGBoostModelIO._save) bst.load_model = _patched_call(bst.load_model, PatchXGBoostModelIO._load) except ImportError: pass except Exception: pass @staticmethod def _save(original_fn, obj, f, *args, **kwargs): ret = original_fn(obj, f, *args, **kwargs) if not PatchXGBoostModelIO.__main_task: return ret if isinstance(f, six.string_types): filename = f elif hasattr(f, 'name'): filename = f.name # noinspection PyBroadException try: f.flush() except Exception: pass else: filename = None # give the model a descriptive name based on the file name # noinspection PyBroadException try: model_name = Path(filename).stem except Exception: model_name = None WeightsFileHandler.create_output_model(obj, filename, Framework.xgboost, PatchXGBoostModelIO.__main_task, singlefile=True, model_name=model_name) return ret @staticmethod def _load(original_fn, f, *args, **kwargs): if isinstance(f, six.string_types): filename = f elif hasattr(f, 'name'): filename = f.name elif len(args) == 1 and isinstance(args[0], six.string_types): filename = args[0] else: filename = None if not PatchXGBoostModelIO.__main_task: return original_fn(f, *args, **kwargs) # register input model empty = _Empty() # Hack: disabled if False and running_remotely(): filename = WeightsFileHandler.restore_weights_file(empty, filename, Framework.xgboost, PatchXGBoostModelIO.__main_task) model = original_fn(filename or f, *args, **kwargs) else: # try to load model before registering, in case we fail model = original_fn(f, *args, **kwargs) WeightsFileHandler.restore_weights_file(empty, filename, Framework.xgboost, PatchXGBoostModelIO.__main_task) if empty.trains_in_model: # noinspection PyBroadException try: model.trains_in_model = empty.trains_in_model except Exception: pass return model