import logging import math import warnings from typing import Any, Sequence, Union, List, Optional, Tuple, Dict import numpy as np import six try: import pandas as pd except ImportError: pd = None from PIL import Image from pathlib2 import Path from .backend_interface.logger import StdStreamPatch, LogFlusher from .backend_interface.task import Task as _Task from .backend_interface.task.development.worker import DevWorker from .backend_interface.task.log import TaskHandler from .backend_interface.util import mutually_exclusive from .config import running_remotely, get_cache_dir, config from .debugging.log import LoggerRoot from .errors import UsageError from .storage.helper import StorageHelper from .utilities.plotly_reporter import SeriesInfo # Make sure that DeprecationWarning within this package always gets printed warnings.filterwarnings('always', category=DeprecationWarning, module=__name__) class Logger(object): """ The ``Logger`` class is the Trains console log and metric statistics interface, and contains methods for explicit reporting. Explicit reporting extends Trains automagical capturing of inputs and output. Explicit reporting methods include scalar plots, line plots, histograms, confusion matrices, 2D and 3D scatter diagrams, text logging, tables, and image uploading and reporting. In the **Trains Web-App (UI)**, ``Logger`` output appears in the **RESULTS** tab, **LOG**, **SCALARS**, **PLOTS**, and **DEBUG SAMPLES** sub-tabs. When you compare experiments, ``Logger`` output appears in the comparisons. .. warning:: Do not construct Logger objects directly. You must get a Logger object before calling any of the other ``Logger`` class methods by calling :meth:`.Task.get_logger` or :meth:`Logger.current_logger`. """ SeriesInfo = SeriesInfo _tensorboard_logging_auto_group_scalars = False _tensorboard_single_series_per_graph = config.get('metrics.tensorboard_single_series_per_graph', False) def __init__(self, private_task): """ .. warning:: **Do not construct Logger manually!** Please use :meth:`Logger.get_current` """ assert isinstance(private_task, _Task), \ 'Logger object cannot be instantiated externally, use Logger.current_logger()' super(Logger, self).__init__() self._task = private_task self._default_upload_destination = None self._flusher = None self._report_worker = None self._task_handler = None self._graph_titles = {} self._tensorboard_series_force_prefix = None if self._task.is_main_task(): StdStreamPatch.patch_std_streams(self) @classmethod def current_logger(cls): # type: () -> Logger """ Get the Logger object for the main execution Task, the current running Task, if one exists. If no Logger object exists, this method creates one and returns it. Therefore, you can call this method from anywhere in the code. .. code-block:: py logger = Logger.current_logger() :return: The Logger object (a singleton) for the current running Task. """ from .task import Task task = Task.current_task() if not task: return None return task.get_logger() def report_text(self, msg, level=logging.INFO, print_console=True, *args, **_): # type: (str, int, bool, Any, Any) -> None """ For explicit reporting, print text to the log. Optionally, print a log level and print to the console. For example: .. code-block:: py logger.report_text('log some text', level=logging.DEBUG, print_console=False) You can view the reported text in the **Trains Web-App (UI)**, **RESULTS** tab, **LOG** sub-tab. :param str msg: The text to log. :param int level: The log level from the Python ``logging`` package. The default value is ``logging.INFO``. :param bool print_console: In addition to the log, print to the console The values are: - ``True`` - Print to the console. (default) - ``False`` - Do not print to the console. """ return self._console(msg, level, not print_console, *args, **_) def report_scalar(self, title, series, value, iteration): # type: (str, str, float, int) -> None """ For explicit reporting, plot a scalar series. For example, plot a scalar series: .. code-block:: py scalar_series = [random.randint(0,10) for i in range(10)] logger.report_scalar(title='scalar metrics','series', value=scalar_series[iteration], iteration=0) You can view the scalar plots in the **Trains Web-App (UI)**, **RESULTS** tab, **SCALARS** sub-tab. :param str title: The title (metric) of the plot. Plot more than one scalar series on the same plot by using the same ``title`` for each call to this method. :param str series: The series name (variant) of the reported scalar. :param float value: The value to plot per iteration. :param int iteration: The iteration number. Iterations are on the x-axis. """ # if task was not started, we have to start it self._start_task_if_needed() self._touch_title_series(title, series) return self._task._reporter.report_scalar(title=title, series=series, value=float(value), iter=iteration) def report_vector( self, title, # type: str series, # type: str values, # type: Sequence[Union[int, float]] iteration, # type: int labels=None, # type: Optional[List[str]] xlabels=None, # type: Optional[List[str]] xaxis=None, # type: Optional[str] yaxis=None, # type: Optional[str] mode=None, # type: Optional[str] extra_layout=None, # type: Optional[dict] ): """ For explicit reporting, plot a vector as (default stacked) histogram. For example: .. code-block:: py vector_series = np.random.randint(10, size=10).reshape(2,5) logger.report_vector(title='vector example', series='vector series', values=vector_series, iteration=0, labels=['A','B'], xaxis='X axis label', yaxis='Y axis label') You can view the vectors plots in the **Trains Web-App (UI)**, **RESULTS** tab, **PLOTS** sub-tab. :param str title: The title (metric) of the plot. :param str series: The series name (variant) of the reported histogram. :param list(float) values: The series values. A list of floats, or an N-dimensional Numpy array containing data for each histogram bar. :type values: list(float), numpy.ndarray :param int iteration: The iteration number. Each ``iteration`` creates another plot. :param list(str) labels: Labels for each bar group, creating a plot legend labeling each series. (Optional) :param list(str) xlabels: Labels per entry in each bucket in the histogram (vector), creating a set of labels for each histogram bar on the x-axis. (Optional) :param str xaxis: The x-axis title. (Optional) :param str yaxis: The y-axis title. (Optional) :param str mode: Multiple histograms mode, stack / group / relative. Default is 'group'. :param dict extra_layout: optional dictionary for layout configuration, passed directly to plotly example: extra_layout={'xaxis': {'type': 'date', 'range': ['2020-01-01', '2020-01-31']}} """ self._touch_title_series(title, series) return self.report_histogram(title, series, values, iteration, labels=labels, xlabels=xlabels, xaxis=xaxis, yaxis=yaxis, mode=mode, extra_layout=extra_layout) def report_histogram( self, title, # type: str series, # type: str values, # type: Sequence[Union[int, float]] iteration, # type: int labels=None, # type: Optional[List[str]] xlabels=None, # type: Optional[List[str]] xaxis=None, # type: Optional[str] yaxis=None, # type: Optional[str] mode=None, # type: Optional[str] extra_layout=None, # type: Optional[dict] ): """ For explicit reporting, plot a (default grouped) histogram. Notice this function will not calculate the histogram, it assumes the histogram was already calculated in `values` For example: .. code-block:: py vector_series = np.random.randint(10, size=10).reshape(2,5) logger.report_histogram(title='histogram example', series='histogram series', values=vector_series, iteration=0, labels=['A','B'], xaxis='X axis label', yaxis='Y axis label') You can view the reported histograms in the **Trains Web-App (UI)**, **RESULTS** tab, **PLOTS** sub-tab. :param str title: The title (metric) of the plot. :param str series: The series name (variant) of the reported histogram. :param list(float) values: The series values. A list of floats, or an N-dimensional Numpy array containing data for each histogram bar. :type values: list(float), numpy.ndarray :param int iteration: The iteration number. Each ``iteration`` creates another plot. :param list(str) labels: Labels for each bar group, creating a plot legend labeling each series. (Optional) :param list(str) xlabels: Labels per entry in each bucket in the histogram (vector), creating a set of labels for each histogram bar on the x-axis. (Optional) :param str xaxis: The x-axis title. (Optional) :param str yaxis: The y-axis title. (Optional) :param str mode: Multiple histograms mode, stack / group / relative. Default is 'group'. :param dict extra_layout: optional dictionary for layout configuration, passed directly to plotly example: extra_layout={'xaxis': {'type': 'date', 'range': ['2020-01-01', '2020-01-31']}} """ if not isinstance(values, np.ndarray): values = np.array(values) # if task was not started, we have to start it self._start_task_if_needed() self._touch_title_series(title, series) return self._task._reporter.report_histogram( title=title, series=series, histogram=values, iter=iteration, labels=labels, xlabels=xlabels, xtitle=xaxis, ytitle=yaxis, mode=mode or 'group', layout_config=extra_layout, ) def report_table( self, title, # type: str series, # type: str iteration, # type: int table_plot=None, # type: Optional[pd.DataFrame] csv=None, # type: Optional[str] url=None, # type: Optional[str] extra_layout=None, # type: Optional[dict] ): """ For explicit report, report a table plot. One and only one of the following parameters must be provided. - ``table_plot`` - Pandas DataFrame - ``csv`` - CSV file - ``url`` - URL to CSV file For example: .. code-block:: py df = pd.DataFrame({'num_legs': [2, 4, 8, 0], 'num_wings': [2, 0, 0, 0], 'num_specimen_seen': [10, 2, 1, 8]}, index=['falcon', 'dog', 'spider', 'fish']) logger.report_table(title='table example',series='pandas DataFrame',iteration=0,table_plot=df) You can view the reported tables in the **Trains Web-App (UI)**, **RESULTS** tab, **PLOTS** sub-tab. :param str title: The title (metric) of the table. :param str series: The series name (variant) of the reported table. :param int iteration: The iteration number. :param table_plot: The output table plot object :type table_plot: pandas.DataFrame :param csv: path to local csv file :type csv: str :param url: A URL to the location of csv file. :type url: str :param extra_layout: optional dictionary for layout configuration, passed directly to plotly example: extra_layout={'xaxis': {'type': 'date', 'range': ['2020-01-01', '2020-01-31']}} :type extra_layout: dict """ mutually_exclusive( UsageError, _check_none=True, table_plot=table_plot, csv=csv, url=url ) table = table_plot if url or csv: if not pd: raise UsageError( "pandas is required in order to support reporting tables using CSV or a URL, " "please install the pandas python package" ) if url: table = pd.read_csv(url) elif csv: table = pd.read_csv(csv) def replace(dst, *srcs): for src in srcs: reporter_table.replace(src, dst, inplace=True) reporter_table = table.fillna(str(np.nan)) replace("NaN", np.nan, math.nan) replace("Inf", np.inf, math.inf) replace("-Inf", -np.inf, np.NINF, -math.inf) return self._task._reporter.report_table( title=title, series=series, table=reporter_table, iteration=iteration, layout_config=extra_layout, ) def report_line_plot( self, title, # type: str series, # type: Sequence[SeriesInfo] iteration, # type: int xaxis, # type: str yaxis, # type: str mode='lines', # type: str reverse_xaxis=False, # type: bool comment=None, # type: Optional[str] extra_layout=None, # type: Optional[dict] ): """ For explicit reporting, plot one or more series as lines. :param str title: The title (metric) of the plot. :param list series: All the series data, one list element for each line in the plot. :param int iteration: The iteration number. :param str xaxis: The x-axis title. (Optional) :param str yaxis: The y-axis title. (Optional) :param str mode: The type of line plot. The values are: - ``lines`` (default) - ``markers`` - ``lines+markers`` :param bool reverse_xaxis: Reverse the x-axis The values are: - ``True`` - The x-axis is high to low (reversed). - ``False`` - The x-axis is low to high (not reversed). (default) :param str comment: A comment displayed with the plot, underneath the title. :param dict extra_layout: optional dictionary for layout configuration, passed directly to plotly example: extra_layout={'xaxis': {'type': 'date', 'range': ['2020-01-01', '2020-01-31']}} """ series = [self.SeriesInfo(**s) if isinstance(s, dict) else s for s in series] # if task was not started, we have to start it self._start_task_if_needed() self._touch_title_series(title, series[0].name if series else '') return self._task._reporter.report_line_plot( title=title, series=series, iter=iteration, xtitle=xaxis, ytitle=yaxis, mode=mode, reverse_xaxis=reverse_xaxis, comment=comment, layout_config=extra_layout, ) def report_scatter2d( self, title, # type: str series, # type: str scatter, # type: Union[Sequence[Tuple[float, float]], np.ndarray] iteration, # type: int xaxis=None, # type: Optional[str] yaxis=None, # type: Optional[str] labels=None, # type: Optional[List[str]] mode='lines', # type: str comment=None, # type: Optional[str] extra_layout=None, # type: Optional[dict] ): """ For explicit reporting, report a 2d scatter plot. For example: .. code-block:: py scatter2d = np.hstack((np.atleast_2d(np.arange(0, 10)).T, np.random.randint(10, size=(10, 1)))) logger.report_scatter2d(title="example_scatter", series="series", iteration=0, scatter=scatter2d, xaxis="title x", yaxis="title y") Plot multiple 2D scatter series on the same plot by passing the same ``title`` and ``iteration`` values to this method: .. code-block:: py scatter2d_1 = np.hstack((np.atleast_2d(np.arange(0, 10)).T, np.random.randint(10, size=(10, 1)))) logger.report_scatter2d(title="example_scatter", series="series_1", iteration=1, scatter=scatter2d_1, xaxis="title x", yaxis="title y") scatter2d_2 = np.hstack((np.atleast_2d(np.arange(0, 10)).T, np.random.randint(10, size=(10, 1)))) logger.report_scatter2d("example_scatter", "series_2", iteration=1, scatter=scatter2d_2, xaxis="title x", yaxis="title y") :param str title: The title (metric) of the plot. :param str series: The series name (variant) of the reported scatter plot. :param list scatter: The scatter data. numpy.ndarray or list of (pairs of x,y) scatter: :param int iteration: The iteration number. To set an initial iteration, for example to continue a previously :param str xaxis: The x-axis title. (Optional) :param str yaxis: The y-axis title. (Optional) :param list(str) labels: Labels per point in the data assigned to the ``scatter`` parameter. The labels must be in the same order as the data. :param str mode: The type of scatter plot. The values are: - ``lines`` - ``markers`` - ``lines+markers`` :param str comment: A comment displayed with the plot, underneath the title. :param dict extra_layout: optional dictionary for layout configuration, passed directly to plotly example: extra_layout={'xaxis': {'type': 'date', 'range': ['2020-01-01', '2020-01-31']}} """ if not isinstance(scatter, np.ndarray): if not isinstance(scatter, list): scatter = list(scatter) scatter = np.array(scatter) # if task was not started, we have to start it self._start_task_if_needed() self._touch_title_series(title, series) return self._task._reporter.report_2d_scatter( title=title, series=series, data=scatter.astype(np.float32), iter=iteration, mode=mode, xtitle=xaxis, ytitle=yaxis, labels=labels, comment=comment, layout_config=extra_layout, ) def report_scatter3d( self, title, # type: str series, # type: str scatter, # type: Union[Sequence[Tuple[float, float, float]], np.ndarray] iteration, # type: int xaxis=None, # type: Optional[str] yaxis=None, # type: Optional[str] zaxis=None, # type: Optional[str] labels=None, # type: Optional[List[str]] mode='markers', # type: str fill=False, # type: bool comment=None, # type: Optional[str] extra_layout=None, # type: Optional[dict] ): """ For explicit reporting, plot a 3d scatter graph (with markers). :param str title: The title (metric) of the plot. :param str series: The series name (variant) of the reported scatter plot. :param Union[numpy.ndarray, list] scatter: The scatter data. list of (pairs of x,y,z), list of series [[(x1,y1,z1)...]], or numpy.ndarray :param int iteration: The iteration number. :param str xaxis: The x-axis title. (Optional) :param str yaxis: The y-axis title. (Optional) :param str zaxis: The z-axis title. (Optional) :param list(str) labels: Labels per point in the data assigned to the ``scatter`` parameter. The labels must be in the same order as the data. :param str mode: The type of scatter plot. The values are: - ``lines`` - ``markers`` - ``lines+markers`` For example: .. code-block:: py scatter3d = np.random.randint(10, size=(10, 3)) logger.report_scatter3d(title="example_scatter_3d", series="series_xyz", iteration=1, scatter=scatter3d, xaxis="title x", yaxis="title y", zaxis="title z") :param bool fill: Fill the area under the curve The values are: - ``True`` - Fill - ``False`` - Do not fill (default) :param str comment: A comment displayed with the plot, underneath the title. :param dict extra_layout: optional dictionary for layout configuration, passed directly to plotly example: extra_layout={'xaxis': {'type': 'date', 'range': ['2020-01-01', '2020-01-31']}} """ # check if multiple series multi_series = ( isinstance(scatter, list) and ( isinstance(scatter[0], np.ndarray) or ( scatter[0] and isinstance(scatter[0], list) and isinstance(scatter[0][0], list) ) ) ) if not multi_series: if not isinstance(scatter, np.ndarray): if not isinstance(scatter, list): scatter = list(scatter) scatter = np.array(scatter) try: scatter = scatter.astype(np.float32) except ValueError: pass # if task was not started, we have to start it self._start_task_if_needed() self._touch_title_series(title, series) return self._task._reporter.report_3d_scatter( title=title, series=series, data=scatter, iter=iteration, labels=labels, mode=mode, fill=fill, comment=comment, xtitle=xaxis, ytitle=yaxis, ztitle=zaxis, layout_config=extra_layout, ) def report_confusion_matrix( self, title, # type: str series, # type: str matrix, # type: np.ndarray iteration, # type: int xaxis=None, # type: Optional[str] yaxis=None, # type: Optional[str] xlabels=None, # type: Optional[List[str]] ylabels=None, # type: Optional[List[str]] yaxis_reversed=False, # type: bool comment=None, # type: Optional[str] extra_layout=None, # type: Optional[dict] ): """ For explicit reporting, plot a heat-map matrix. For example: .. code-block:: py confusion = np.random.randint(10, size=(10, 10)) logger.report_confusion_matrix("example confusion matrix", "ignored", iteration=1, matrix=confusion, xaxis="title X", yaxis="title Y") :param str title: The title (metric) of the plot. :param str series: The series name (variant) of the reported confusion matrix. :param numpy.ndarray matrix: A heat-map matrix (example: confusion matrix) :param int iteration: The iteration number. :param str xaxis: The x-axis title. (Optional) :param str yaxis: The y-axis title. (Optional) :param list(str) xlabels: Labels for each column of the matrix. (Optional) :param list(str) ylabels: Labels for each row of the matrix. (Optional) :param bool yaxis_reversed: If False 0,0 is at the bottom left corner. If True 0,0 is at the Top left corner :param str comment: A comment displayed with the plot, underneath the title. :param dict extra_layout: optional dictionary for layout configuration, passed directly to plotly example: extra_layout={'xaxis': {'type': 'date', 'range': ['2020-01-01', '2020-01-31']}} """ if not isinstance(matrix, np.ndarray): matrix = np.array(matrix) # if task was not started, we have to start it self._start_task_if_needed() self._touch_title_series(title, series) return self._task._reporter.report_value_matrix( title=title, series=series, data=matrix.astype(np.float32), iter=iteration, xtitle=xaxis, ytitle=yaxis, xlabels=xlabels, ylabels=ylabels, yaxis_reversed=yaxis_reversed, comment=comment, layout_config=extra_layout, ) def report_matrix( self, title, # type: str series, # type: str matrix, # type: np.ndarray iteration, # type: int xaxis=None, # type: Optional[str] yaxis=None, # type: Optional[str] xlabels=None, # type: Optional[List[str]] ylabels=None, # type: Optional[List[str]] yaxis_reversed=False, # type: bool extra_layout=None, # type: Optional[dict] ): """ For explicit reporting, plot a confusion matrix. .. note:: This method is the same as :meth:`Logger.report_confusion_matrix`. :param str title: The title (metric) of the plot. :param str series: The series name (variant) of the reported confusion matrix. :param numpy.ndarray matrix: A heat-map matrix (example: confusion matrix) :param int iteration: The iteration number. :param str xaxis: The x-axis title. (Optional) :param str yaxis: The y-axis title. (Optional) :param list(str) xlabels: Labels for each column of the matrix. (Optional) :param list(str) ylabels: Labels for each row of the matrix. (Optional) :param bool yaxis_reversed: If False 0,0 is at the bottom left corner. If True 0,0 is at the Top left corner :param dict extra_layout: optional dictionary for layout configuration, passed directly to plotly example: extra_layout={'xaxis': {'type': 'date', 'range': ['2020-01-01', '2020-01-31']}} """ self._touch_title_series(title, series) return self.report_confusion_matrix(title, series, matrix, iteration, xaxis=xaxis, yaxis=yaxis, xlabels=xlabels, ylabels=ylabels, yaxis_reversed=yaxis_reversed, extra_layout=extra_layout) def report_surface( self, title, # type: str series, # type: str matrix, # type: np.ndarray iteration, # type: int xaxis=None, # type: Optional[str] yaxis=None, # type: Optional[str] zaxis=None, # type: Optional[str] xlabels=None, # type: Optional[List[str]] ylabels=None, # type: Optional[List[str]] camera=None, # type: Optional[Sequence[float]] comment=None, # type: Optional[str] extra_layout=None, # type: Optional[dict] ): """ For explicit reporting, report a 3d surface plot. .. note:: This method plots the same data as :meth:`Logger.report_confusion_matrix`, but presents the data as a surface diagram not a confusion matrix. .. code-block:: py surface_matrix = np.random.randint(10, size=(10, 10)) logger.report_surface("example surface", "series", iteration=0, matrix=surface_matrix, xaxis="title X", yaxis="title Y", zaxis="title Z") :param str title: The title (metric) of the plot. :param str series: The series name (variant) of the reported surface. :param numpy.ndarray matrix: A heat-map matrix (example: confusion matrix) :param int iteration: The iteration number. :param str xaxis: The x-axis title. (Optional) :param str yaxis: The y-axis title. (Optional) :param str zaxis: The z-axis title. (Optional) :param list(str) xlabels: Labels for each column of the matrix. (Optional) :param list(str) ylabels: Labels for each row of the matrix. (Optional) :param list(float) camera: X,Y,Z coordinates indicating the camera position. The default value is ``(1,1,1)``. :param str comment: A comment displayed with the plot, underneath the title. :param dict extra_layout: optional dictionary for layout configuration, passed directly to plotly example: extra_layout={'xaxis': {'type': 'date', 'range': ['2020-01-01', '2020-01-31']}} """ if not isinstance(matrix, np.ndarray): matrix = np.array(matrix) # if task was not started, we have to start it self._start_task_if_needed() self._touch_title_series(title, series) return self._task._reporter.report_value_surface( title=title, series=series, data=matrix.astype(np.float32), iter=iteration, xlabels=xlabels, ylabels=ylabels, xtitle=xaxis, ytitle=yaxis, ztitle=zaxis, camera=camera, comment=comment, layout_config=extra_layout, ) def report_image( self, title, # type: str series, # type: str iteration, # type: int local_path=None, # type: Optional[str] image=None, # type: Optional[Union[np.ndarray, Image.Image]] matrix=None, # type: Optional[np.ndarray] max_image_history=None, # type: Optional[int] delete_after_upload=False, # type: bool url=None # type: Optional[str] ): """ For explicit reporting, report an image and upload its contents. This method uploads the image to a preconfigured bucket (see :meth:`Logger.setup_upload`) with a key (filename) describing the task ID, title, series and iteration. For example: .. code-block:: py matrix = np.eye(256, 256, dtype=np.uint8)*255 matrix = np.concatenate((np.atleast_3d(matrix), np.zeros((256, 256, 2), dtype=np.uint8)), axis=2) logger.report_image("test case", "image color red", iteration=1, image=m) image_open = Image.open(os.path.join("", "")) logger.report_image("test case", "image PIL", iteration=1, image=image_open) One and only one of the following parameters must be provided. - ``local_path`` - ``url`` - ``image`` - ``matrix`` :param str title: The title (metric) of the image. :param str series: The series name (variant) of the reported image. :param int iteration: The iteration number. :param str local_path: A path to an image file. :param str url: A URL for the location of a pre-uploaded image. :param image: Image data (RGB). :type image: numpy.ndarray, PIL.Image.Image :param numpy.ndarray matrix: Image data (RGB). .. note:: The ``matrix`` paramater is deprecated. Use the ``image`` parameters. :type matrix: 3D numpy.ndarray :param int max_image_history: The maximum number of images to store per metric/variant combination. For an unlimited number, use a negative value. The default value is set in global configuration (default=``5``). :param bool delete_after_upload: After the upload, delete the local copy of the image The values are: - ``True`` - Delete after upload. - ``False`` - Do not delete after upload. (default) """ mutually_exclusive( UsageError, _check_none=True, local_path=local_path or None, url=url or None, image=image, matrix=matrix ) if matrix is not None: warnings.warn("'matrix' variable is deprecated; use 'image' instead.", DeprecationWarning) if image is None: image = matrix if image is not None and not isinstance(image, (np.ndarray, Image.Image)): raise ValueError("Supported 'image' types are: numpy.ndarray or PIL.Image") # if task was not started, we have to start it self._start_task_if_needed() self._touch_title_series(title, series) if url: self._task._reporter.report_image( title=title, series=series, src=url, iter=iteration, ) else: upload_uri = self.get_default_upload_destination() if not upload_uri: upload_uri = Path(get_cache_dir()) / 'debug_images' upload_uri.mkdir(parents=True, exist_ok=True) # Verify that we can upload to this destination upload_uri = str(upload_uri) storage = StorageHelper.get(upload_uri) upload_uri = storage.verify_upload(folder_uri=upload_uri) if isinstance(image, Image.Image): image = np.array(image) self._task._reporter.report_image_and_upload( title=title, series=series, path=local_path, image=image, iter=iteration, upload_uri=upload_uri, max_image_history=max_image_history, delete_after_upload=delete_after_upload, ) def report_media( self, title, # type: str series, # type: str iteration, # type: int local_path=None, # type: Optional[str] stream=None, # type: Optional[Union[six.BytesIO, six.StringIO]] file_extension=None, # type: Optional[str] max_history=None, # type: Optional[int] delete_after_upload=False, # type: bool url=None # type: Optional[str] ): """ Report media upload its contents, including images, audio, and video. Media is uploaded to a preconfigured bucket (see setup_upload()) with a key (filename) describing the task ID, title, series and iteration. One and only one of the following parameters must be provided - ``local_path`` - ``stream`` - ``url`` If you use ``stream`` for a BytesIO stream to upload, ``file_extension`` must be provided. :param str title: The title (metric) of the media. :param str series: The series name (variant) of the reported media. :param int iteration: The iteration number. :param str local_path: A path to an media file. :param stream: BytesIO stream to upload. If provided, ``file_extension`` must also be provided. :param str url: A URL to the location of a pre-uploaded media. :param file_extension: A file extension to use when ``stream`` is passed. :param int max_history: The maximum number of media files to store per metric/variant combination use negative value for unlimited. default is set in global configuration (default=5) :param bool delete_after_upload: After the file is uploaded, delete the local copy - ``True`` - Delete - ``False`` - Do not delete """ mutually_exclusive( UsageError, _check_none=True, local_path=local_path or None, url=url or None, stream=stream, ) if stream is not None and not file_extension: raise ValueError("No file extension provided for stream media upload") # if task was not started, we have to start it self._start_task_if_needed() self._touch_title_series(title, series) if url: self._task._reporter.report_media( title=title, series=series, src=url, iter=iteration, ) else: upload_uri = self.get_default_upload_destination() if not upload_uri: upload_uri = Path(get_cache_dir()) / 'debug_images' upload_uri.mkdir(parents=True, exist_ok=True) # Verify that we can upload to this destination upload_uri = str(upload_uri) storage = StorageHelper.get(upload_uri) upload_uri = storage.verify_upload(folder_uri=upload_uri) self._task._reporter.report_media_and_upload( title=title, series=series, path=local_path, stream=stream, iter=iteration, upload_uri=upload_uri, max_history=max_history, delete_after_upload=delete_after_upload, file_extension=file_extension, ) def report_plotly( self, title, # type: str series, # type: str iteration, # type: int figure, # type: Union[Dict, "Figure"] # noqa: F821 ): """ Report a ``Plotly`` figure (plot) directly ``Plotly`` figure can be a ``plotly.graph_objs._figure.Figure`` or a dictionary as defined by ``plotly.js`` :param str title: The title (metric) of the plot. :param str series: The series name (variant) of the reported plot. :param int iteration: The iteration number. :param dict figure: A ``plotly`` Figure object or a ``poltly`` dictionary """ # if task was not started, we have to start it self._start_task_if_needed() self._touch_title_series(title, series) plot = figure if isinstance(figure, dict) else figure.to_plotly_json() # noinspection PyBroadException try: plot['layout']['title'] = series except Exception: pass self._task._reporter.report_plot( title=title, series=series, plot=plot, iter=iteration, ) def set_default_upload_destination(self, uri): # type: (str) -> None """ Set the destination storage URI (for example, S3, Google Cloud Storage, a file path) for uploading debug images. The images are uploaded separately. A link to each image is reported. .. note:: Credentials for the destination storage are specified in the Trains configuration file, ``~/trains.conf``. :param str uri: example: 's3://bucket/directory/' or 'file:///tmp/debug/' :return: True, if the destination scheme is supported (for example, ``s3://``, ``file://``, or ``gc://``). False, if not supported. """ # Create the storage helper storage = StorageHelper.get(uri) # Verify that we can upload to this destination uri = storage.verify_upload(folder_uri=uri) self._default_upload_destination = uri def get_default_upload_destination(self): # type: () -> str """ Get the destination storage URI (for example, S3, Google Cloud Storage, a file path) for uploading debug images (see :meth:`Logger.set_default_upload_destination`). :return: The default upload destination URI. For example: ``s3://bucket/directory/``, or ``file:///tmp/debug/``. """ # noinspection PyProtectedMember return self._default_upload_destination or self._task._get_default_report_storage_uri() def flush(self): # type: () -> bool """ Flush cached reports and console outputs to backend. :return: True, if successfully flushed the cache. False, if failed. """ self._flush_stdout_handler() if self._task: return self._task.flush() return False def get_flush_period(self): # type: () -> Optional[float] """ Get the Logger flush period. :return: The logger flush period in seconds. """ if self._flusher: return self._flusher.period return None def set_flush_period(self, period): # type: (float) -> None """ Set the logger flush period. :param float period: The period to flush the logger in seconds. To set no periodic flush, specify ``None`` or ``0``. """ if self._task.is_main_task() and DevWorker.report_stdout and DevWorker.report_period and \ not running_remotely() and period is not None: period = min(period or DevWorker.report_period, DevWorker.report_period) if not period: if self._flusher: self._flusher.exit() self._flusher = None elif self._flusher: self._flusher.set_period(period) else: self._flusher = LogFlusher(self, period) self._flusher.start() def report_image_and_upload( self, title, # type: str series, # type: str iteration, # type: int path=None, # type: Optional[str] matrix=None, # type: Optional[Union[np.ndarray, Image.Image]] max_image_history=None, # type: Optional[int] delete_after_upload=False # type: bool ): """ .. deprecated:: 0.13.0 Use :meth:`Logger.report_image` instead """ self.report_image(title=title, series=series, iteration=iteration, local_path=path, image=matrix, max_image_history=max_image_history, delete_after_upload=delete_after_upload) @classmethod def tensorboard_auto_group_scalars(cls, group_scalars=False): # type: (bool) -> None """ Group together TensorBoard scalars that do not have a title, or assign a title/series with the same tag. :param group_scalars: Group TensorBoard scalars without a title The values are: - ``True`` - Scalars without specific titles are grouped together in the "Scalars" plot, preserving backward compatibility with Trains automagical behavior. - ``False`` - TensorBoard scalars without titles get a title/series with the same tag. (default) :type group_scalars: bool """ cls._tensorboard_logging_auto_group_scalars = group_scalars @classmethod def tensorboard_single_series_per_graph(cls, single_series=False): # type: (bool) -> None """ Group TensorBoard scalar series together or in separate plots. :param single_series: Group TensorBoard scalar series together The values are: - ``True`` - Generate a separate plot for each TensorBoard scalar series. - ``False`` - Group the TensorBoard scalar series together in the same plot. (default) :type single_series: bool """ cls._tensorboard_single_series_per_graph = single_series @classmethod def _remove_std_logger(cls): StdStreamPatch.remove_std_logger() def _console(self, msg, level=logging.INFO, omit_console=False, *args, **kwargs): # type: (str, int, bool, Any, Any) -> None """ print text to log (same as print to console, and also prints to console) :param str msg: text to print to the console (always send to the backend and displayed in console) :param level: logging level, default: logging.INFO :type level: Logging Level :param bool omit_console: Omit the console output, and only send the ``msg`` value to the log - ``True`` - Omit the console output. - ``False`` - Print the console output. (default) """ try: level = int(level) except (TypeError, ValueError): self._task.log.log(level=logging.ERROR, msg='Logger failed casting log level "%s" to integer' % str(level)) level = logging.INFO if not running_remotely(): # noinspection PyBroadException try: record = self._task.log.makeRecord( "console", level=level, fn='', lno=0, func='', msg=msg, args=args, exc_info=None ) # find the task handler that matches our task if not self._task_handler: self._task_handler = [h for h in LoggerRoot.get_base_logger().handlers if isinstance(h, TaskHandler) and h.task_id == self._task.id][0] self._task_handler.emit(record) except Exception: # avoid infinite loop, output directly to stderr try: # make sure we are writing to the original stdout StdStreamPatch.stderr_original_write( 'trains.Logger failed sending log [level {}]: "{}"\n'.format(level, msg)) except Exception: pass if not omit_console: # if we are here and we grabbed the stdout, we need to print the real thing if DevWorker.report_stdout and not running_remotely(): # noinspection PyBroadException try: # make sure we are writing to the original stdout StdStreamPatch.stdout_original_write(str(msg) + '\n') except Exception: pass else: print(str(msg)) # if task was not started, we have to start it self._start_task_if_needed() def _report_image_plot_and_upload( self, title, # type: str series, # type: str iteration, # type: int path=None, # type: Optional[str] matrix=None, # type: Optional[np.ndarray] max_image_history=None, # type: Optional[int] delete_after_upload=False # type: bool ): """ Report an image, upload its contents, and present in plots section using plotly Image is uploaded to a preconfigured bucket (see :meth:`Logger.setup_upload`) with a key (filename) describing the task ID, title, series and iteration. :param title: Title (AKA metric) :type title: str :param series: Series (AKA variant) :type series: str :param iteration: Iteration number :type iteration: int :param path: A path to an image file. Required unless matrix is provided. :type path: str :param matrix: A 3D numpy.ndarray object containing image data (RGB). Required unless filename is provided. :type matrix: str :param max_image_history: maximum number of image to store per metric/variant combination \ use negative value for unlimited. default is set in global configuration (default=5) :type max_image_history: int :param delete_after_upload: if True, one the file was uploaded the local copy will be deleted :type delete_after_upload: boolean """ # if task was not started, we have to start it self._start_task_if_needed() upload_uri = self.get_default_upload_destination() if not upload_uri: upload_uri = Path(get_cache_dir()) / 'debug_images' upload_uri.mkdir(parents=True, exist_ok=True) # Verify that we can upload to this destination upload_uri = str(upload_uri) storage = StorageHelper.get(upload_uri) upload_uri = storage.verify_upload(folder_uri=upload_uri) self._task._reporter.report_image_plot_and_upload( title=title, series=series, path=path, matrix=matrix, iter=iteration, upload_uri=upload_uri, max_image_history=max_image_history, delete_after_upload=delete_after_upload, ) def _report_file_and_upload( self, title, # type: str series, # type: str iteration, # type: int path=None, # type: Optional[str] max_file_history=None, # type: Optional[int] delete_after_upload=False # type: bool ): """ Upload a file and report it as link in the debug images section. File is uploaded to a preconfigured storage (see :meth:`Logger.setup_upload`) with a key (filename) describing the task ID, title, series and iteration. :param title: Title (AKA metric) :type title: str :param series: Series (AKA variant) :type series: str :param iteration: Iteration number :type iteration: int :param path: A path to file to be uploaded :type path: str :param max_file_history: maximum number of files to store per metric/variant combination \ use negative value for unlimited. default is set in global configuration (default=5) :type max_file_history: int :param delete_after_upload: if True, one the file was uploaded the local copy will be deleted :type delete_after_upload: boolean """ # if task was not started, we have to start it self._start_task_if_needed() upload_uri = self.get_default_upload_destination() if not upload_uri: upload_uri = Path(get_cache_dir()) / 'debug_images' upload_uri.mkdir(parents=True, exist_ok=True) # Verify that we can upload to this destination upload_uri = str(upload_uri) storage = StorageHelper.get(upload_uri) upload_uri = storage.verify_upload(folder_uri=upload_uri) self._task._reporter.report_image_and_upload( title=title, series=series, path=path, image=None, iter=iteration, upload_uri=upload_uri, max_image_history=max_file_history, delete_after_upload=delete_after_upload, ) def _start_task_if_needed(self): # deprecated pass def _flush_stdout_handler(self): if self._task_handler and DevWorker.report_stdout: self._task_handler.flush() def _close_stdout_handler(self, wait=True): # detach the sys stdout/stderr StdStreamPatch.remove_std_logger(self) if self._task_handler and DevWorker.report_stdout: t = self._task_handler self._task_handler = None t.close(wait) def _touch_title_series(self, title, series): # type: (str, str) -> None if title not in self._graph_titles: self._graph_titles[title] = set() self._graph_titles[title].add(series) def _get_used_title_series(self): # type: () -> dict return self._graph_titles def _get_tensorboard_series_prefix(self): # type: () -> Optional[str] """ :return str: return a string prefix to put in front of every report combing from tensorboard """ return self._tensorboard_series_force_prefix def _set_tensorboard_series_prefix(self, prefix): # type: (Optional[str]) -> () """ :param str prefix: Set a string prefix to put in front of every report combing from tensorboard """ self._tensorboard_series_force_prefix = str(prefix) if prefix else None @classmethod def _get_tensorboard_auto_group_scalars(cls): # type: () -> bool """ :return: True, if we preserve Tensorboard backward compatibility behaviour, i.e., scalars without specific title will be under the "Scalars" graph default is False: Tensorboard scalars without title will have title/series with the same tag """ return cls._tensorboard_logging_auto_group_scalars @classmethod def _get_tensorboard_single_series_per_graph(cls): # type: () -> bool """ :return: True, if we generate a separate graph (plot) for each Tensorboard scalar series default is False: Tensorboard scalar series will be grouped according to their title """ return cls._tensorboard_single_series_per_graph