# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Notice that this file has been modified to examplify the use of
# ClearML when used with PyTorch Lightning
import sys

import torch
import torchvision.transforms as T
from torch.nn import functional as F
import torch.nn as nn
from torchmetrics import Accuracy

from torchvision.datasets.mnist import MNIST
from pytorch_lightning import LightningModule
from clearml import Task
try:
    from pytorch_lightning.cli import LightningCLI
except ImportError:
    try:
        from pytorch_lightning.utilities.cli import LightningCLI
    except ImportError:
        print("Looks like you are using pytorch_lightning>=2.0. This example only works with older versions")
        sys.exit(0)


class Net(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 32, 3, 1)
        self.conv2 = nn.Conv2d(32, 64, 3, 1)
        self.dropout1 = nn.Dropout(0.25)
        self.dropout2 = nn.Dropout(0.5)
        self.fc1 = nn.Linear(9216, 128)
        self.fc2 = nn.Linear(128, 10)

    def forward(self, x):
        x = self.conv1(x)
        x = F.relu(x)
        x = self.conv2(x)
        x = F.relu(x)
        x = F.max_pool2d(x, 2)
        x = self.dropout1(x)
        x = torch.flatten(x, 1)
        x = self.fc1(x)
        x = F.relu(x)
        x = self.dropout2(x)
        x = self.fc2(x)
        output = F.log_softmax(x, dim=1)
        return output


class ImageClassifier(LightningModule):
    def __init__(self, model=None, lr=1.0, gamma=0.7, batch_size=32):
        super().__init__()
        self.save_hyperparameters(ignore="model")
        self.model = model or Net()
        try:
            self.test_acc = Accuracy()
        except TypeError:
            self.test_acc = Accuracy("binary")

    def forward(self, x):
        return self.model(x)

    def training_step(self, batch, batch_idx):
        x, y = batch
        logits = self.forward(x)
        loss = F.nll_loss(logits, y.long())
        self.log("train_loss", loss)
        return loss

    def test_step(self, batch, batch_idx):
        x, y = batch
        logits = self.forward(x)
        loss = F.nll_loss(logits, y.long())
        self.test_acc(logits, y)
        self.log("test_acc", self.test_acc)
        self.log("test_loss", loss)

    def configure_optimizers(self):
        optimizer = torch.optim.Adadelta(self.model.parameters(), lr=self.hparams.lr)
        return [optimizer], [torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=self.hparams.gamma)]

    @property
    def transform(self):
        return T.Compose([T.ToTensor(), T.Normalize((0.1307,), (0.3081,))])

    def prepare_data(self) -> None:
        MNIST("./data", download=True)

    def train_dataloader(self):
        train_dataset = MNIST("./data", train=True, download=False, transform=self.transform)
        return torch.utils.data.DataLoader(train_dataset, batch_size=self.hparams.batch_size)

    def test_dataloader(self):
        test_dataset = MNIST("./data", train=False, download=False, transform=self.transform)
        return torch.utils.data.DataLoader(test_dataset, batch_size=self.hparams.batch_size)


if __name__ == "__main__":
    Task.add_requirements("requirements.txt")
    Task.init(project_name="example", task_name="pytorch_lightning_jsonargparse")
    LightningCLI(ImageClassifier, seed_everything_default=42, run=True)