try: import joblib except ImportError: from sklearn.externals import joblib from sklearn import datasets from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split import numpy as np import matplotlib.pyplot as plt from trains import Task task = Task.init(project_name="examples", task_name="joblib test") iris = datasets.load_iris() X = iris.data y = iris.target X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) model = LogisticRegression(solver='liblinear', multi_class='auto') # sklearn LogisticRegression class model.fit(X_train, y_train) joblib.dump(model, 'model.pkl', compress=True) loaded_model = joblib.load('model.pkl') result = loaded_model.score(X_test, y_test) x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 h = .02 # step size in the mesh xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) plt.figure(1, figsize=(4, 3)) plt.scatter(X[:, 0], X[:, 1], c=y, edgecolors='k', cmap=plt.cm.Paired) plt.xlabel('Sepal length') plt.ylabel('Sepal width') plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max()) plt.xticks(()) plt.yticks(()) plt.show()