# ClearML - Example of tensorboard with tensorflow (without any actual training) # import os import tensorflow as tf import numpy as np from tempfile import gettempdir from PIL import Image from clearml import Task def generate_summary(k, step): # Make a normal distribution, with a shifting mean mean_moving_normal = tf.random.normal(shape=[1000], mean=(5 * k), stddev=1) # Record that distribution into a histogram summary tf.summary.histogram("normal/moving_mean", mean_moving_normal, step=step) tf.summary.scalar("normal/value", mean_moving_normal[-1], step=step) # Make a normal distribution with shrinking variance variance_shrinking_normal = tf.random.normal(shape=[1000], mean=0, stddev=1-k) # Record that distribution too tf.summary.histogram("normal/shrinking_variance", variance_shrinking_normal, step=step) tf.summary.scalar("normal/variance_shrinking_normal", variance_shrinking_normal[-1], step=step) # Let's combine both of those distributions into one dataset normal_combined = tf.concat([mean_moving_normal, variance_shrinking_normal], 0) # We add another histogram summary to record the combined distribution tf.summary.histogram("normal/bimodal", normal_combined, step=step) tf.summary.scalar("normal/normal_combined", normal_combined[0], step=step) # Add a gamma distribution gamma = tf.random.gamma(shape=[1000], alpha=k) tf.summary.histogram("gamma", gamma, step=step) # And a poisson distribution poisson = tf.random.poisson(shape=[1000], lam=k) tf.summary.histogram("poisson", poisson, step=step) # And a uniform distribution uniform = tf.random.uniform(shape=[1000], maxval=k*10) tf.summary.histogram("uniform", uniform, step=step) # Finally, combine everything together! all_distributions = [mean_moving_normal, variance_shrinking_normal, gamma, poisson, uniform] all_combined = tf.concat(all_distributions, 0) tf.summary.histogram("all_combined", all_combined, step=step) # Log text value tf.summary.text("this is a test", "This is the content", step=step) # convert to 4d [batch, col, row, RGB-channels] image_open = Image.open(os.path.join('..', '..', 'reporting', 'data_samples', 'picasso.jpg')) image = np.asarray(image_open) image_gray = image[:, :, 0][np.newaxis, :, :, np.newaxis] image_rgba = np.concatenate((image, 255*np.atleast_3d(np.ones(shape=image.shape[:2], dtype=np.uint8))), axis=2) image_rgba = image_rgba[np.newaxis, :, :, :] image = image[np.newaxis, :, :, :] tf.summary.image("test", image, max_outputs=10, step=step) tf.summary.image("test_gray", image_gray, max_outputs=10, step=step) tf.summary.image("test_rgba", image_rgba, max_outputs=10, step=step) task = Task.init(project_name='examples', task_name='TensorbBoard toy example') # create the tensorboard file writer in a temp folder writer = tf.summary.create_file_writer(os.path.join(gettempdir(), "toy_tb_example")) # Setup a loop and write the summaries to disk N = 40 for step in range(N): k_val = step/float(N) with writer.as_default(): generate_summary(k_val, tf.cast(step, tf.int64)) print('Tensorboard toy example done')