import sys from argparse import ArgumentParser import pytorch_lightning as pl import torch from torch.nn import functional as F from torch.utils.data import DataLoader, random_split from torchvision import transforms from torchvision.datasets.mnist import MNIST from clearml import Task class LitClassifier(pl.LightningModule): def __init__(self, hidden_dim=128, learning_rate=1e-3): super().__init__() self.save_hyperparameters() self.l1 = torch.nn.Linear(28 * 28, self.hparams.hidden_dim) self.l2 = torch.nn.Linear(self.hparams.hidden_dim, 10) def forward(self, x): x = x.view(x.size(0), -1) x = torch.relu(self.l1(x)) x = torch.relu(self.l2(x)) return x def training_step(self, batch, batch_idx): x, y = batch y_hat = self(x) loss = F.cross_entropy(y_hat, y) return loss def validation_step(self, batch, batch_idx): x, y = batch y_hat = self(x) loss = F.cross_entropy(y_hat, y) self.log('valid_loss', loss) return loss def test_step(self, batch, batch_idx): x, y = batch y_hat = self(x) loss = F.cross_entropy(y_hat, y) return loss def configure_optimizers(self): return torch.optim.Adam(self.parameters(), lr=self.hparams.learning_rate) @staticmethod def add_model_specific_args(parent_parser): parser = ArgumentParser(parents=[parent_parser], add_help=False) parser.add_argument('--hidden_dim', type=int, default=128) parser.add_argument('--learning_rate', type=float, default=0.0001) return parser if __name__ == '__main__': pl.seed_everything(0) parser = ArgumentParser() parser.add_argument('--batch_size', default=32, type=int) parser.add_argument('--max_epochs', default=3, type=int) sys.argv.extend(['--max_epochs', '2']) parser = LitClassifier.add_model_specific_args(parser) args = parser.parse_args() Task.init(project_name="examples", task_name="pytorch lightning MNIST") # ------------ # data # ------------ dataset = MNIST('', train=True, download=True, transform=transforms.ToTensor()) mnist_test = MNIST('', train=False, download=True, transform=transforms.ToTensor()) mnist_train, mnist_val = random_split(dataset, [55000, 5000]) train_loader = DataLoader(mnist_train, batch_size=args.batch_size) val_loader = DataLoader(mnist_val, batch_size=args.batch_size) test_loader = DataLoader(mnist_test, batch_size=args.batch_size) # ------------ # model # ------------ model = LitClassifier(args.hidden_dim, args.learning_rate) # ------------ # training # ------------ trainer = pl.Trainer(max_epochs=args.max_epochs) trainer.fit(model, train_loader, val_loader) # ------------ # testing # ------------ trainer.test(dataloaders=test_loader)