# TRAINS - Example of Matplotlib and Seaborn integration and reporting # import numpy as np import matplotlib.pyplot as plt from trains import Task # Create a new task, disable automatic matplotlib connect task = Task.init( project_name='examples', task_name='Manual Matplotlib example', auto_connect_frameworks={'matplotlib': False} ) # Create plot and explicitly report as figure N = 50 x = np.random.rand(N) y = np.random.rand(N) colors = np.random.rand(N) area = (30 * np.random.rand(N))**2 # 0 to 15 point radii plt.scatter(x, y, s=area, c=colors, alpha=0.5) task.logger.report_matplotlib_figure( title="Manual Reporting", series="Just a plot", iteration=0, figure=plt, ) # Show the plot plt.show() # Create plot and explicitly report as an image plt.scatter(x, y, s=area, c=colors, alpha=0.5) task.logger.report_matplotlib_figure( title="Manual Reporting", series="Plot as an image", iteration=0, figure=plt, report_image=True, ) # Create an image plot and explicitly report (as an image) m = np.eye(256, 256, dtype=np.uint8) plt.imshow(m) task.logger.report_matplotlib_figure( title="Manual Reporting", series="Image plot", iteration=0, figure=plt, report_image=True, # Note this is required for image plots ) # Show the plot plt.show()