# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Notice that this file has been modified to examplify the use of # ClearML when used with PyTorch Lightning import sys import torch import torchvision.transforms as T from torch.nn import functional as F import torch.nn as nn from torchmetrics import Accuracy from torchvision.datasets.mnist import MNIST from pytorch_lightning import LightningModule from clearml import Task try: from pytorch_lightning.cli import LightningCLI except ImportError: try: from pytorch_lightning.utilities.cli import LightningCLI except ImportError: print("Looks like you are using pytorch_lightning>=2.0. This example only works with older versions") sys.exit(0) class Net(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(1, 32, 3, 1) self.conv2 = nn.Conv2d(32, 64, 3, 1) self.dropout1 = nn.Dropout(0.25) self.dropout2 = nn.Dropout(0.5) self.fc1 = nn.Linear(9216, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = F.relu(x) x = F.max_pool2d(x, 2) x = self.dropout1(x) x = torch.flatten(x, 1) x = self.fc1(x) x = F.relu(x) x = self.dropout2(x) x = self.fc2(x) output = F.log_softmax(x, dim=1) return output class ImageClassifier(LightningModule): def __init__(self, model=None, lr=1.0, gamma=0.7, batch_size=32): super().__init__() self.save_hyperparameters(ignore="model") self.model = model or Net() try: self.test_acc = Accuracy() except TypeError: self.test_acc = Accuracy("binary") def forward(self, x): return self.model(x) def training_step(self, batch, batch_idx): x, y = batch logits = self.forward(x) loss = F.nll_loss(logits, y.long()) return loss def test_step(self, batch, batch_idx): x, y = batch logits = self.forward(x) loss = F.nll_loss(logits, y.long()) self.test_acc(logits, y) self.log("test_acc", self.test_acc) self.log("test_loss", loss) def configure_optimizers(self): optimizer = torch.optim.Adadelta(self.model.parameters(), lr=self.hparams.lr) return [optimizer], [torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=self.hparams.gamma)] @property def transform(self): return T.Compose([T.ToTensor(), T.Normalize((0.1307,), (0.3081,))]) def prepare_data(self) -> None: MNIST("./data", download=True) def train_dataloader(self): train_dataset = MNIST("./data", train=True, download=False, transform=self.transform) return torch.utils.data.DataLoader(train_dataset, batch_size=self.hparams.batch_size) def test_dataloader(self): test_dataset = MNIST("./data", train=False, download=False, transform=self.transform) return torch.utils.data.DataLoader(test_dataset, batch_size=self.hparams.batch_size) if __name__ == "__main__": Task.add_requirements("requirements.txt") Task.init(project_name="example", task_name="pytorch_lightning_jsonargparse") LightningCLI(ImageClassifier, seed_everything_default=42, run=True)