# ClearML - Keras with Tensorboard example code, automatic logging model and Tensorboard outputs
#
# Train a simple deep NN on the MNIST dataset.
# Gets to 98.40% test accuracy after 20 epochs
# (there is *a lot* of margin for parameter tuning).
# 2 seconds per epoch on a K520 GPU.
from __future__ import print_function

import argparse
import os
import tempfile

import numpy as np
import tensorflow as tf
from tensorflow.keras import utils as np_utils
from tensorflow.keras.callbacks import ModelCheckpoint, TensorBoard
from tensorflow.keras.datasets import mnist
from tensorflow.keras.layers import Activation, Dense
from tensorflow.keras.models import Sequential
from tensorflow.keras.optimizers import RMSprop

from clearml import Task


class TensorBoardImage(TensorBoard):
    @staticmethod
    def make_image(tensor):
        from PIL import Image
        import io
        tensor = np.stack((tensor, tensor, tensor), axis=2)
        height, width, channels = tensor.shape
        image = Image.fromarray(tensor)
        output = io.BytesIO()
        image.save(output, format='PNG')
        image_string = output.getvalue()
        output.close()
        return tf.Summary.Image(height=height,
                                width=width,
                                colorspace=channels,
                                encoded_image_string=image_string)

    def on_epoch_end(self, epoch, logs=None):
        if logs is None:
            logs = {}
        super(TensorBoardImage, self).on_epoch_end(epoch, logs)
        images = self.validation_data[0]  # 0 - data; 1 - labels
        img = (255 * images[0].reshape(28, 28)).astype('uint8')

        image = self.make_image(img)
        summary = tf.Summary(value=[tf.Summary.Value(tag='image', image=image)])
        self.writer.add_summary(summary, epoch)


parser = argparse.ArgumentParser(description='Keras MNIST Example')
parser.add_argument('--batch-size', type=int, default=128, help='input batch size for training (default: 128)')
parser.add_argument('--epochs', type=int, default=6, help='number of epochs to train (default: 6)')
args = parser.parse_args()

# the data, shuffled and split between train and test sets
nb_classes = 10
(X_train, y_train), (X_test, y_test) = mnist.load_data()

X_train = X_train.reshape(60000, 784).astype('float32')/255.
X_test = X_test.reshape(10000, 784).astype('float32')/255.
print(X_train.shape[0], 'train samples')
print(X_test.shape[0], 'test samples')

# convert class vectors to binary class matrices
Y_train = np_utils.to_categorical(y_train, nb_classes)
Y_test = np_utils.to_categorical(y_test, nb_classes)

model = Sequential()
model.add(Dense(512, input_shape=(784,)))
model.add(Activation('relu'))
# model.add(Dropout(0.2))
model.add(Dense(512))
model.add(Activation('relu'))
# model.add(Dropout(0.2))
model.add(Dense(10))
model.add(Activation('softmax'))

model2 = Sequential()
model2.add(Dense(512, input_shape=(784,)))
model2.add(Activation('relu'))

model.summary()

model.compile(loss='categorical_crossentropy',
              optimizer=RMSprop(),
              metrics=['accuracy'])

# Connecting ClearML with the current process,
# from here on everything is logged automatically
task = Task.init(project_name='examples', task_name='Keras with TensorBoard example')

# To set your own configuration:
# task.connect_configuration(
#     name="MyConfig",
#     configuration={'test': 1337, 'nested': {'key': 'value', 'number': 1}}
# )

# Advanced: setting model class enumeration
labels = dict(('digit_%d' % i, i) for i in range(10))
task.set_model_label_enumeration(labels)

output_folder = os.path.join(tempfile.gettempdir(), 'keras_example')

board = TensorBoard(histogram_freq=1, log_dir=output_folder, write_images=False)
model_store = ModelCheckpoint(filepath=os.path.join(output_folder, 'weight.{epoch}.hdf5'))

# load previous model, if it is there
# noinspection PyBroadException
try:
    model.load_weights(os.path.join(output_folder, 'weight.1.hdf5'))
except Exception:
    pass

history = model.fit(X_train, Y_train,
                    batch_size=args.batch_size, epochs=args.epochs,
                    callbacks=[board, model_store],
                    verbose=1, validation_data=(X_test, Y_test))
score = model.evaluate(X_test, Y_test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])