import numpy as np from PIL import Image from torch.utils.tensorboard import SummaryWriter from trains import Task task = Task.init(project_name='examples', task_name='pytorch tensorboard toy example') writer = SummaryWriter(log_dir='/tmp/tensorboard_logs') # convert to 4d [batch, col, row, RGB-channels] image_open = Image.open('./samples/picasso.jpg') image = np.asarray(image_open) image_gray = image[:, :, 0][np.newaxis, :, :, np.newaxis] image_rgba = np.concatenate((image, 255*np.atleast_3d(np.ones(shape=image.shape[:2], dtype=np.uint8))), axis=2) image_rgba = image_rgba[np.newaxis, :, :, :] image = image[np.newaxis, :, :, :] writer.add_image("test/first", image[0], dataformats='HWC') writer.add_image("test_gray/second", image_gray[0], dataformats='HWC') writer.add_image("test_rgba/third", image_rgba[0], dataformats='HWC') # writer.add_image("image/first_series", image, max_outputs=10) # writer.add_image("image_gray/second_series", image_gray, max_outputs=10) # writer.add_image("image_rgba/third_series", image_rgba, max_outputs=10) print('Done!')