import joblib import matplotlib.pyplot as plt import numpy as np from sklearn.linear_model import LogisticRegression from clearml import Task # Connecting ClearML with the current process, # from here on everything is logged automatically task = Task.init(project_name="examples", task_name="Pipeline step 3 train model") # Arguments args = { 'dataset_task_id': 'REPLACE_WITH_DATASET_TASK_ID', } task.connect(args) # only create the task, we will actually execute it later task.execute_remotely() print('Retrieving Iris dataset') dataset_task = Task.get_task(task_id=args['dataset_task_id']) X_train = dataset_task.artifacts['X_train'].get() X_test = dataset_task.artifacts['X_test'].get() y_train = dataset_task.artifacts['y_train'].get() y_test = dataset_task.artifacts['y_test'].get() print('Iris dataset loaded') model = LogisticRegression(solver='liblinear', multi_class='auto') model.fit(X_train, y_train) joblib.dump(model, 'model.pkl', compress=True) loaded_model = joblib.load('model.pkl') result = loaded_model.score(X_test, y_test) print('model trained & stored') x_min, x_max = X_test[:, 0].min() - .5, X_test[:, 0].max() + .5 y_min, y_max = X_test[:, 1].min() - .5, X_test[:, 1].max() + .5 h = .02 # step size in the mesh xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) plt.figure(1, figsize=(4, 3)) plt.scatter(X_test[:, 0], X_test[:, 1], c=y_test, edgecolors='k', cmap=plt.cm.Paired) plt.xlabel('Sepal length') plt.ylabel('Sepal width') plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max()) plt.xticks(()) plt.yticks(()) plt.title('Iris Types') plt.show() print('Done')