# Example of MNIST training with PyTorch and abseil integration from __future__ import print_function import os from tempfile import gettempdir import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from absl import app, flags from torchvision import datasets, transforms from clearml import Task, Logger # Training settings FLAGS = flags.FLAGS flags.DEFINE_integer("batch_size", 64, help="Batch size for training") flags.DEFINE_integer("test_batch_size", 1000, help="Batch size for testing") flags.DEFINE_integer("epochs", 10, help="Number of epochs to train") flags.DEFINE_float("lr", 0.01, help="Learning rate") flags.DEFINE_float("momentum", 0.5, help="SGD momentum") flags.DEFINE_bool("cuda", True, help="Enable CUDA training") flags.DEFINE_integer("seed", 1, help="Random seed") flags.DEFINE_integer( "log_interval", 10, help="How many batches to wait before logging training status" ) flags.DEFINE_bool("save_model", True, help="For saving the current Model") class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 20, 5, 1) self.conv2 = nn.Conv2d(20, 50, 5, 1) self.fc1 = nn.Linear(4 * 4 * 50, 500) self.fc2 = nn.Linear(500, 10) def forward(self, x): x = F.relu(self.conv1(x)) x = F.max_pool2d(x, 2, 2) x = F.relu(self.conv2(x)) x = F.max_pool2d(x, 2, 2) x = x.view(-1, 4 * 4 * 50) x = F.relu(self.fc1(x)) x = self.fc2(x) return F.log_softmax(x, dim=1) def train(args, model, device, train_loader, optimizer, epoch): model.train() for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data) loss = F.nll_loss(output, target) loss.backward() optimizer.step() if batch_idx % args.log_interval == 0: Logger.current_logger().report_scalar( "train", "loss", iteration=(epoch * len(train_loader) + batch_idx), value=loss.item(), ) print( "Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}".format( epoch, batch_idx * len(data), len(train_loader.dataset), 100.0 * batch_idx / len(train_loader), loss.item(), ) ) def test(args, model, device, test_loader, epoch): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) test_loss += F.nll_loss( output, target, reduction="sum" ).item() # sum up batch loss pred = output.argmax( dim=1, keepdim=True ) # get the index of the max log-probability correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) Logger.current_logger().report_scalar( "test", "loss", iteration=epoch, value=test_loss ) Logger.current_logger().report_scalar( "test", "accuracy", iteration=epoch, value=(correct / len(test_loader.dataset)) ) print( "Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)".format( test_loss, correct, len(test_loader.dataset), 100.0 * correct / len(test_loader.dataset), ) ) def main(_): # Connecting ClearML with the current process, # from here on everything is logged automatically task = Task.init(project_name="examples", task_name="PyTorch MNIST train with abseil") use_cuda = FLAGS.cuda and torch.cuda.is_available() torch.manual_seed(FLAGS.seed) device = torch.device("cuda" if use_cuda else "cpu") kwargs = {"num_workers": 4, "pin_memory": True} if use_cuda else {} train_loader = torch.utils.data.DataLoader( datasets.MNIST( os.path.join("..", "data"), train=True, download=True, transform=transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))] ), ), batch_size=FLAGS.batch_size, shuffle=True, **kwargs ) test_loader = torch.utils.data.DataLoader( datasets.MNIST( os.path.join("..", "data"), train=False, transform=transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))] ), ), batch_size=FLAGS.test_batch_size, shuffle=True, **kwargs ) model = Net().to(device) optimizer = optim.SGD(model.parameters(), lr=FLAGS.lr, momentum=FLAGS.momentum) for epoch in range(1, FLAGS.epochs + 1): train(FLAGS, model, device, train_loader, optimizer, epoch) test(FLAGS, model, device, test_loader, epoch) if FLAGS.save_model: torch.save(model.state_dict(), os.path.join(gettempdir(), "mnist_cnn.pt")) if __name__ == "__main__": app.run(main)