# ClearML - Example of Matplotlib and Seaborn integration and reporting # import numpy as np import matplotlib.pyplot as plt import seaborn as sns from clearml import Task # Connecting ClearML with the current process, # from here on everything is logged automatically task = Task.init(project_name='examples', task_name='Matplotlib example') # Create a plot N = 50 x = np.random.rand(N) y = np.random.rand(N) colors = np.random.rand(N) area = (30 * np.random.rand(N))**2 # 0 to 15 point radii plt.scatter(x, y, s=area, c=colors, alpha=0.5) # Plot will be reported automatically plt.show() # Alternatively, in order to report the plot with a more meaningful title/series and iteration number area = (40 * np.random.rand(N))**2 plt.scatter(x, y, s=area, c=colors, alpha=0.5) task.logger.report_matplotlib_figure(title="My Plot Title", series="My Plot Series", iteration=10, figure=plt) plt.show() # Create another plot - with a name x = np.linspace(0, 10, 30) y = np.sin(x) plt.plot(x, y, 'o', color='black') # Plot will be reported automatically plt.show() # Create image plot m = np.eye(256, 256, dtype=np.uint8) plt.imshow(m) # Plot will be reported automatically plt.show() # Create image plot - with a name m = np.eye(256, 256, dtype=np.uint8) plt.imshow(m) plt.title('Image Title') # Plot will be reported automatically plt.show() sns.set(style="darkgrid") # Load an example dataset with long-form data fmri = sns.load_dataset("fmri") # Plot the responses for different events and regions sns.lineplot(x="timepoint", y="signal", hue="region", style="event", data=fmri) # Plot will be reported automatically plt.show() print('This is a Matplotlib & Seaborn example')