import xgboost as xgb from sklearn.datasets import load_boston from sklearn.model_selection import train_test_split from clearml import Task task = Task.init(project_name='examples', task_name='xgboost metric auto reporting') X, y = load_boston(return_X_y=True) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=100) dtrain = xgb.DMatrix(X_train, label=y_train) dtest = xgb.DMatrix(X_test, label=y_test) params = { 'objective': 'reg:squarederror', 'eval_metric': 'rmse' } bst = xgb.train( params, dtrain, num_boost_round=100, evals=[(dtrain, 'train'), (dtest, 'test')], verbose_eval=0 )