from random import random, sample from trains import Task # define random search space, # This is a simple random search # (can be integrated with 'bayesian-optimization' 'hpbandster' etc.) space = { 'batch_size': lambda: sample([64, 96, 128, 160, 192], 1)[0], 'layer_1': lambda: sample(range(128, 512, 32), 1)[0], 'layer_2': lambda: sample(range(128, 512, 32), 1)[0], } # number of random samples to test from 'space' total_number_of_experiments = 3 # execution queue to add experiments to execution_queue_name = 'default' # Select base template task # Notice we can be more imaginative and use task_id which will eliminate the need to use project name template_task = Task.get_task(project_name='examples', task_name='Keras AutoML base') for i in range(total_number_of_experiments): # clone the template task into a new write enabled task (where we can change parameters) cloned_task = Task.clone(source_task=template_task, name=template_task.name+' {}'.format(i), parent=template_task.id) # get the original template parameters cloned_task_parameters = cloned_task.get_parameters() # override with random samples form grid for k in space.keys(): cloned_task_parameters[k] = space[k]() # put back into the new cloned task cloned_task.set_parameters(cloned_task_parameters) print('Experiment {} set with parameters {}'.format(i, cloned_task_parameters)) # enqueue the task for execution Task.enqueue(cloned_task.id, queue_name=execution_queue_name) print('Experiment id={} enqueue for execution'.format(cloned_task.id)) # we are done, the next step is to watch the experiments graphs print('Done')