# ClearML - Example of manual single value scalars reporting # from clearml import Task def main(): # Connecting ClearML with the current process, # from here on everything is logged automatically task = Task.init(project_name="examples", task_name="Scalar reporting (Single Value)") # Get the task logger, # You can also call Task.current_task().get_logger() from anywhere in your code. logger = task.get_logger() # report scalars logger.report_single_value(name="metric_A", value=125) logger.report_single_value(name="metric_B", value=305.95) logger.report_single_value(name="metric_C", value=486) # force flush reports # If flush is not called, reports are flushed in the background every couple of seconds, # and at the end of the process execution logger.flush(wait=True) # get scalars # Getting one metric metric_B = task.get_reported_single_value('metric_B') print('metric_B is', metric_B) # Getting all metrics at once metric_all = task.get_reported_single_values() print('All metrics', metric_all) if __name__ == "__main__": main()