"""Keras Tuner CIFAR10 example for the TensorFlow blog post.""" import kerastuner as kt import tensorflow as tf import tensorflow_datasets as tfds from clearml.external.kerastuner import ClearmlTunerLogger from clearml import Task physical_devices = tf.config.list_physical_devices('GPU') if physical_devices: tf.config.experimental.set_memory_growth(physical_devices[0], True) def build_model(hp): inputs = tf.keras.Input(shape=(32, 32, 3)) x = inputs for i in range(hp.Int('conv_blocks', 3, 5, default=3)): filters = hp.Int('filters_' + str(i), 32, 256, step=32) for _ in range(2): x = tf.keras.layers.Convolution2D( filters, kernel_size=(3, 3), padding='same')(x) x = tf.keras.layers.BatchNormalization()(x) x = tf.keras.layers.ReLU()(x) if hp.Choice('pooling_' + str(i), ['avg', 'max']) == 'max': x = tf.keras.layers.MaxPool2D()(x) else: x = tf.keras.layers.AvgPool2D()(x) x = tf.keras.layers.GlobalAvgPool2D()(x) x = tf.keras.layers.Dense( hp.Int('hidden_size', 30, 100, step=10, default=50), activation='relu')(x) x = tf.keras.layers.Dropout( hp.Float('dropout', 0, 0.5, step=0.1, default=0.5))(x) outputs = tf.keras.layers.Dense(10, activation='softmax')(x) model = tf.keras.Model(inputs, outputs) model.compile( optimizer=tf.keras.optimizers.Adam( hp.Float('learning_rate', 1e-4, 1e-2, sampling='log')), loss='sparse_categorical_crossentropy', metrics=['accuracy']) return model # Connecting ClearML with the current process, # from here on everything is logged automatically task = Task.init('examples', 'kerastuner cifar10 tuning') tuner = kt.Hyperband( build_model, project_name='kt examples', logger=ClearmlTunerLogger(), objective='val_accuracy', max_epochs=10, hyperband_iterations=6) data = tfds.load('cifar10') train_ds, test_ds = data['train'], data['test'] def standardize_record(record): return tf.cast(record['image'], tf.float32) / 255., record['label'] train_ds = train_ds.map(standardize_record).cache().batch(64).shuffle(10000) test_ds = test_ds.map(standardize_record).cache().batch(64) tuner.search(train_ds, validation_data=test_ds, callbacks=[tf.keras.callbacks.EarlyStopping(patience=1), tf.keras.callbacks.TensorBoard(), ]) best_model = tuner.get_best_models(1)[0] best_hyperparameters = tuner.get_best_hyperparameters(1)[0]