from clearml import StorageManager, Dataset def main(): manager = StorageManager() print("STEP1 : Downloading CSV dataset") csv_file_path = manager.get_local_copy( remote_url="https://allegro-datasets.s3.amazonaws.com/datasets/Iris_Species.csv" ) print("STEP2 : Creating a dataset") # By default, clearml data uploads to the clearml fileserver. Adding output_uri argument to the create() method # allows you to specify custom storage like s3 \ gcs \ azure \ local storage simple_dataset = Dataset.create(dataset_project="dataset_examples", dataset_name="CSV_Dataset") print("STEP3 : Adding CSV file to the Dataset") simple_dataset.add_files(path=csv_file_path) print("STEP4 : Upload and finalize") simple_dataset.upload() simple_dataset.finalize() print("We are done, have a great day :)") if __name__ == "__main__": main()