from clearml import Task from time import sleep # Initialize the Task Pipe's first Task used to start the Task Pipe task = Task.init( "examples", "Simple Controller Task", task_type=Task.TaskTypes.controller ) # Create a hyper-parameter dictionary for the task param = dict() # Connect the hyper-parameter dictionary to the task param = task.connect(param) # In this example we pass next task's name as a parameter param["next_task_name"] = "Toy Base Task" # This is a parameter name in the next task we want to change param["param_name"] = "Example_Param" # This is the parameter value in the next task we want to change param["param_name_new_value"] = 3 # The queue where we want the template task (clone) to be sent to param["execution_queue_name"] = "default" # Simulate the work of a Task print("Processing....") sleep(2.0) print("Done processing :)") # Get a reference to the task to pipe to. next_task = Task.get_task( project_name=task.get_project_name(), task_name=param["next_task_name"] ) # Clone the task to pipe to. This creates a task with status Draft whose parameters can be modified. cloned_task = Task.clone(source_task=next_task, name="Auto generated cloned task") # Get the original parameters of the Task, modify the value of one parameter, # and set the parameters in the next Task cloned_task_parameters = cloned_task.get_parameters() cloned_task_parameters[param["param_name"]] = param["param_name_new_value"] cloned_task.set_parameters(cloned_task_parameters) # Enqueue the Task for execution. The enqueued Task must already exist in the clearml platform print( "Enqueue next step in pipeline to queue: {}".format(param["execution_queue_name"]) ) Task.enqueue(cloned_task.id, queue_name=param["execution_queue_name"]) # We are done. The next step in the pipe line is in charge of the pipeline now. print("Done")