mirror of
https://github.com/clearml/clearml
synced 2025-03-09 21:40:51 +00:00
Add manual seaborn logging example (#628)
This commit is contained in:
parent
0153b053cb
commit
f4e4423b3a
@ -2,15 +2,16 @@
|
|||||||
#
|
#
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
|
import seaborn as sns
|
||||||
from clearml import Task
|
from clearml import Task
|
||||||
|
|
||||||
# Connecting ClearML with the current process,
|
# Connecting ClearML with the current process,
|
||||||
# from here on everything is logged automatically
|
# from here on everything is logged automatically
|
||||||
# Create a new task, disable automatic matplotlib connect
|
# Create a new task, disable automatic matplotlib connect
|
||||||
task = Task.init(
|
task = Task.init(
|
||||||
project_name='examples',
|
project_name="examples",
|
||||||
task_name='Manual Matplotlib example',
|
task_name="Manual Matplotlib example",
|
||||||
auto_connect_frameworks={'matplotlib': False}
|
auto_connect_frameworks={"matplotlib": False},
|
||||||
)
|
)
|
||||||
|
|
||||||
# Create plot and explicitly report as figure
|
# Create plot and explicitly report as figure
|
||||||
@ -21,10 +22,7 @@ colors = np.random.rand(N)
|
|||||||
area = (30 * np.random.rand(N))**2 # 0 to 15 point radii
|
area = (30 * np.random.rand(N))**2 # 0 to 15 point radii
|
||||||
plt.scatter(x, y, s=area, c=colors, alpha=0.5)
|
plt.scatter(x, y, s=area, c=colors, alpha=0.5)
|
||||||
task.logger.report_matplotlib_figure(
|
task.logger.report_matplotlib_figure(
|
||||||
title="Manual Reporting",
|
title="Manual Reporting", series="Just a plot", iteration=0, figure=plt
|
||||||
series="Just a plot",
|
|
||||||
iteration=0,
|
|
||||||
figure=plt,
|
|
||||||
)
|
)
|
||||||
|
|
||||||
# Show the plot
|
# Show the plot
|
||||||
@ -39,19 +37,38 @@ task.logger.report_matplotlib_figure(
|
|||||||
figure=plt,
|
figure=plt,
|
||||||
report_image=True,
|
report_image=True,
|
||||||
)
|
)
|
||||||
|
# Show the plot
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
# Create image plot
|
||||||
# Create an image plot and explicitly report (as an image)
|
|
||||||
m = np.eye(256, 256, dtype=np.uint8)
|
m = np.eye(256, 256, dtype=np.uint8)
|
||||||
plt.imshow(m)
|
plt.imshow(m)
|
||||||
|
# Report plot
|
||||||
task.logger.report_matplotlib_figure(
|
task.logger.report_matplotlib_figure(
|
||||||
title="Manual Reporting",
|
title="Manual Reporting",
|
||||||
series="Image plot",
|
series="Image plot",
|
||||||
iteration=0,
|
iteration=0,
|
||||||
figure=plt,
|
figure=plt,
|
||||||
report_image=True, # Note this is required for image plots
|
report_interactive=False,
|
||||||
)
|
)
|
||||||
|
# Show plot
|
||||||
# Show the plot
|
|
||||||
plt.show()
|
plt.show()
|
||||||
|
|
||||||
|
# Create Seaborn plot
|
||||||
|
sns.set(style="darkgrid")
|
||||||
|
# Load an example dataset with long-form data
|
||||||
|
fmri = sns.load_dataset("fmri")
|
||||||
|
# Plot the responses for different events and regions
|
||||||
|
sns.lineplot(x="timepoint", y="signal", hue="region", style="event", data=fmri)
|
||||||
|
# Report plot
|
||||||
|
task.logger.report_matplotlib_figure(
|
||||||
|
title="Seaborn example",
|
||||||
|
series="My Plot Series 4",
|
||||||
|
iteration=10,
|
||||||
|
figure=plt,
|
||||||
|
report_interactive=False,
|
||||||
|
)
|
||||||
|
# Show plot
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
print("This is a Matplotlib & Seaborn example")
|
||||||
|
Loading…
Reference in New Issue
Block a user