mirror of
https://github.com/clearml/clearml
synced 2025-04-03 12:31:11 +00:00
Fix pipeline argument becomes None if default value is not set
This commit is contained in:
parent
452d3c5750
commit
dd17fca080
@ -29,7 +29,7 @@ from ..model import BaseModel, OutputModel
|
||||
from ..storage.util import hash_dict
|
||||
from ..task import Task
|
||||
from ..utilities.process.mp import leave_process
|
||||
from ..utilities.proxy_object import LazyEvalWrapper, flatten_dictionary, walk_nested_dict_tuple_list, verify_basic_type
|
||||
from ..utilities.proxy_object import LazyEvalWrapper, flatten_dictionary, walk_nested_dict_tuple_list
|
||||
|
||||
|
||||
class PipelineController(object):
|
||||
@ -701,7 +701,9 @@ class PipelineController(object):
|
||||
function_input_artifacts = {}
|
||||
# go over function_kwargs, split it into string and input artifacts
|
||||
for k, v in function_kwargs.items():
|
||||
if v is not None and self._step_ref_pattern.match(str(v)):
|
||||
if v is None:
|
||||
continue
|
||||
if self._step_ref_pattern.match(str(v)):
|
||||
# check for step artifacts
|
||||
step, _, artifact = v[2:-1].partition('.')
|
||||
if step in self._nodes and artifact in self._nodes[step].return_artifacts:
|
||||
@ -711,9 +713,14 @@ class PipelineController(object):
|
||||
# steps from tasks the _nodes is till empty, only after deserializing we will have the full DAG)
|
||||
if self._task.running_locally():
|
||||
self.__verify_step_reference(node=self.Node(name=name), step_ref_string=v)
|
||||
elif not verify_basic_type(v):
|
||||
elif not isinstance(v, (float, int, bool, six.string_types)):
|
||||
function_input_artifacts[k] = "{}.{}.{}".format(self._task.id, name, k)
|
||||
self._task.upload_artifact("{}.{}".format(name, k), artifact_object=v, wait_on_upload=True)
|
||||
self._task.upload_artifact(
|
||||
"{}.{}".format(name, k),
|
||||
artifact_object=v,
|
||||
wait_on_upload=True,
|
||||
extension_name=".pkl" if isinstance(v, dict) else None,
|
||||
)
|
||||
|
||||
function_kwargs = {k: v for k, v in function_kwargs.items() if k not in function_input_artifacts}
|
||||
parameters = {"{}/{}".format(CreateFromFunction.kwargs_section, k): v for k, v in function_kwargs.items()}
|
||||
@ -3500,7 +3507,10 @@ class PipelineDecorator(PipelineController):
|
||||
# store the pipeline result of we have any:
|
||||
if return_value and pipeline_result is not None:
|
||||
a_pipeline._task.upload_artifact(
|
||||
name=str(return_value), artifact_object=pipeline_result, wait_on_upload=True
|
||||
name=str(return_value),
|
||||
artifact_object=pipeline_result,
|
||||
wait_on_upload=True,
|
||||
extension_name=".pkl" if isinstance(pipeline_result, dict) else None,
|
||||
)
|
||||
|
||||
# now we can stop the pipeline
|
||||
@ -3625,13 +3635,17 @@ class PipelineDecorator(PipelineController):
|
||||
x for x in cls._evaluated_return_values.get(tid, []) if x in leaves
|
||||
]
|
||||
for k, v in kwargs.items():
|
||||
if v is None or verify_basic_type(v):
|
||||
if v is None or isinstance(v, (float, int, bool, six.string_types)):
|
||||
_node.parameters["{}/{}".format(CreateFromFunction.kwargs_section, k)] = v
|
||||
else:
|
||||
# we need to create an artifact
|
||||
artifact_name = 'result_{}_{}'.format(re.sub(r'\W+', '', _node.name), k)
|
||||
cls._singleton._task.upload_artifact(
|
||||
name=artifact_name, artifact_object=v, wait_on_upload=True)
|
||||
name=artifact_name,
|
||||
artifact_object=v,
|
||||
wait_on_upload=True,
|
||||
extension_name=".pkl" if isinstance(v, dict) else None,
|
||||
)
|
||||
_node.parameters["{}/{}".format(CreateFromFunction.input_artifact_section, k)] = \
|
||||
"{}.{}".format(cls._singleton._task.id, artifact_name)
|
||||
|
||||
|
@ -500,7 +500,11 @@ if __name__ == '__main__':
|
||||
if not isinstance(results, (tuple, list)) or len(result_names) == 1:
|
||||
results = [results]
|
||||
for name, artifact in zip(result_names, results):
|
||||
task.upload_artifact(name=name, artifact_object=artifact)
|
||||
task.upload_artifact(
|
||||
name=name,
|
||||
artifact_object=artifact,
|
||||
extension_name='.pkl' if isinstance(artifact, dict) else None
|
||||
)
|
||||
"""
|
||||
|
||||
@classmethod
|
||||
|
@ -439,6 +439,8 @@ class Artifacts(object):
|
||||
os.unlink(local_filename)
|
||||
raise
|
||||
artifact_type_data.content_type = mimetypes.guess_type(local_filename)[0]
|
||||
elif extension_name == ".pkl":
|
||||
store_as_pickle = True
|
||||
elif np and isinstance(artifact_object, np.ndarray):
|
||||
artifact_type = 'numpy'
|
||||
artifact_type_data.preview = preview or str(artifact_object.__repr__())
|
||||
|
@ -1930,6 +1930,7 @@ class Task(_Task):
|
||||
- pandas.DataFrame - ``.csv.gz``, ``.parquet``, ``.feather``, ``.pickle`` (default ``.csv.gz``)
|
||||
- numpy.ndarray - ``.npz``, ``.csv.gz`` (default ``.npz``)
|
||||
- PIL.Image - whatever extensions PIL supports (default ``.png``)
|
||||
- Any object - ``.pkl`` (if this extension is passed, the object will be pickled)
|
||||
- In case the ``serialization_function`` argument is set - any extension is supported
|
||||
|
||||
:param Callable[Any, Union[bytes, bytearray]] serialization_function: A serialization function that takes one
|
||||
|
Loading…
Reference in New Issue
Block a user