mirror of
https://github.com/clearml/clearml
synced 2025-04-10 15:35:51 +00:00
Add fastai binding support
This commit is contained in:
parent
88d88e914d
commit
d642639890
134
trains/binding/frameworks/fastai_bind.py
Normal file
134
trains/binding/frameworks/fastai_bind.py
Normal file
@ -0,0 +1,134 @@
|
||||
import statistics
|
||||
import sys
|
||||
|
||||
import numpy as np
|
||||
|
||||
from . import _patched_call
|
||||
from .tensorflow_bind import WeightsGradientHistHelper
|
||||
from ..import_bind import PostImportHookPatching
|
||||
from ...debugging.log import LoggerRoot
|
||||
|
||||
|
||||
class PatchFastai(object):
|
||||
__metrics_names = None
|
||||
__main_task = None
|
||||
|
||||
@staticmethod
|
||||
def update_current_task(task, **kwargs):
|
||||
PatchFastai.__main_task = task
|
||||
PatchFastai._patch_model_callback()
|
||||
PostImportHookPatching.add_on_import(
|
||||
"fastai", PatchFastai._patch_model_callback
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def _patch_model_callback():
|
||||
if "fastai" in sys.modules:
|
||||
try:
|
||||
from fastai.basic_train import Recorder
|
||||
|
||||
Recorder.on_batch_end = _patched_call(
|
||||
Recorder.on_batch_end, PatchFastai._on_batch_end
|
||||
)
|
||||
Recorder.on_backward_end = _patched_call(
|
||||
Recorder.on_backward_end, PatchFastai._on_backward_end
|
||||
)
|
||||
Recorder.on_epoch_end = _patched_call(
|
||||
Recorder.on_epoch_end, PatchFastai._on_epoch_end
|
||||
)
|
||||
Recorder.on_train_begin = _patched_call(
|
||||
Recorder.on_train_begin, PatchFastai._on_train_begin
|
||||
)
|
||||
|
||||
except ImportError:
|
||||
pass
|
||||
except Exception as ex:
|
||||
LoggerRoot.get_base_logger(PatchFastai).debug(str(ex))
|
||||
|
||||
@staticmethod
|
||||
def _on_train_begin(original_fn, recorder, *args, **kwargs):
|
||||
original_fn(recorder, *args, **kwargs)
|
||||
PatchFastai.__metrics_names = (
|
||||
["train_loss"] if recorder.no_val else ["train_loss", "valid_loss"]
|
||||
)
|
||||
PatchFastai.__metrics_names += recorder.metrics_names
|
||||
|
||||
@staticmethod
|
||||
def _on_backward_end(original_fn, recorder, *args, **kwargs):
|
||||
def report_model_stats(series, value):
|
||||
logger.report_scalar("model_stats_gradients", series, value, iteration)
|
||||
|
||||
original_fn(recorder, *args, **kwargs)
|
||||
gradients = [
|
||||
x.grad.clone().detach().cpu()
|
||||
for x in recorder.learn.model.parameters()
|
||||
if x.grad is not None
|
||||
]
|
||||
if len(gradients) == 0:
|
||||
return
|
||||
iteration = kwargs.get("iteration")
|
||||
norms = [x.data.norm() for x in gradients]
|
||||
logger = PatchFastai.__main_task.get_logger()
|
||||
for name, val in zip(
|
||||
[
|
||||
"avg_norm",
|
||||
"median_norm",
|
||||
"max_norm",
|
||||
"min_norm",
|
||||
"num_zeros",
|
||||
"avg_gradient",
|
||||
"median_gradient",
|
||||
"max_gradient",
|
||||
"min_gradient",
|
||||
],
|
||||
[
|
||||
sum(norms) / len(gradients),
|
||||
statistics.median(norms),
|
||||
max(norms),
|
||||
min(norms),
|
||||
sum(
|
||||
(np.asarray(x) == 0.0).sum()
|
||||
for x in [x.data.data.cpu().numpy() for x in gradients]
|
||||
),
|
||||
sum(x.data.mean() for x in gradients) / len(gradients),
|
||||
statistics.median(x.data.median() for x in gradients),
|
||||
max(x.data.max() for x in gradients),
|
||||
min(x.data.min() for x in gradients),
|
||||
],
|
||||
):
|
||||
report_model_stats(name, val)
|
||||
|
||||
@staticmethod
|
||||
def _on_epoch_end(original_fn, recorder, *args, **kwargs):
|
||||
original_fn(recorder, *args, **kwargs)
|
||||
logger = PatchFastai.__main_task.get_logger()
|
||||
iteration = kwargs.get("iteration")
|
||||
for series, value in zip(
|
||||
PatchFastai.__metrics_names,
|
||||
[kwargs.get("smooth_loss")] + kwargs.get("last_metrics", []),
|
||||
):
|
||||
logger.report_scalar("metrics", series, value, iteration)
|
||||
PatchFastai.__main_task.flush()
|
||||
|
||||
@staticmethod
|
||||
def _on_batch_end(original_fn, recorder, *args, **kwargs):
|
||||
original_fn(recorder, *args, **kwargs)
|
||||
if kwargs.get("iteration") == 0 or not kwargs.get("train"):
|
||||
return
|
||||
logger = PatchFastai.__main_task.get_logger()
|
||||
logger.report_scalar(
|
||||
"metrics", "train_loss", kwargs.get("last_loss"), kwargs.get("iteration")
|
||||
)
|
||||
gradient_hist_helper = WeightsGradientHistHelper(logger)
|
||||
iteration = kwargs.get("iteration")
|
||||
params = [
|
||||
(name, values.clone().detach().cpu())
|
||||
for (name, values) in recorder.model.named_parameters()
|
||||
]
|
||||
for (name, values) in params:
|
||||
gradient_hist_helper.add_histogram(
|
||||
title="model_weights",
|
||||
series="model_weights/" + name,
|
||||
step=iteration,
|
||||
hist_data=values,
|
||||
)
|
@ -7,6 +7,7 @@ import time
|
||||
from argparse import ArgumentParser
|
||||
from tempfile import mkstemp
|
||||
|
||||
|
||||
try:
|
||||
# noinspection PyCompatibility
|
||||
from collections.abc import Callable, Sequence as CollectionsSequence
|
||||
@ -30,6 +31,7 @@ from .backend_interface.util import get_single_result, exact_match_regex, make_m
|
||||
from .binding.absl_bind import PatchAbsl
|
||||
from .binding.artifacts import Artifacts, Artifact
|
||||
from .binding.environ_bind import EnvironmentBind, PatchOsFork
|
||||
from .binding.frameworks.fastai_bind import PatchFastai
|
||||
from .binding.frameworks.pytorch_bind import PatchPyTorchModelIO
|
||||
from .binding.frameworks.tensorflow_bind import TensorflowBinding
|
||||
from .binding.frameworks.xgboost_bind import PatchXGBoostModelIO
|
||||
@ -469,6 +471,8 @@ class Task(_Task):
|
||||
PatchPyTorchModelIO.update_current_task(task)
|
||||
if is_auto_connect_frameworks_bool or auto_connect_frameworks.get('xgboost', True):
|
||||
PatchXGBoostModelIO.update_current_task(task)
|
||||
if is_auto_connect_frameworks_bool or auto_connect_frameworks.get('fastai', True):
|
||||
PatchFastai.update_current_task(task)
|
||||
if auto_resource_monitoring and not is_sub_process_task_id:
|
||||
task._resource_monitor = ResourceMonitor(
|
||||
task, report_mem_used_per_process=not config.get(
|
||||
|
Loading…
Reference in New Issue
Block a user