Add catboost support (#542)

Co-authored-by: ajecc <eugenajechiloae@gmail.com>
This commit is contained in:
eugen-ajechiloae-clearml 2022-02-03 21:36:27 +02:00 committed by GitHub
parent eb5350f551
commit d53dbbf697
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 184 additions and 1 deletions

View File

@ -0,0 +1,114 @@
import sys
from pathlib2 import Path
import six
from ..frameworks import WeightsFileHandler, _Empty, _patched_call
from ..frameworks.base_bind import PatchBaseModelIO
from ..import_bind import PostImportHookPatching
from ...model import Framework
class PatchCatBoostModelIO(PatchBaseModelIO):
__main_task = None
__patched = None
__callback_cls = None
@staticmethod
def update_current_task(task, **kwargs):
PatchCatBoostModelIO.__main_task = task
PatchCatBoostModelIO._patch_model_io()
PostImportHookPatching.add_on_import("catboost", PatchCatBoostModelIO._patch_model_io)
@staticmethod
def _patch_model_io():
if PatchCatBoostModelIO.__patched:
return
if "catboost" not in sys.modules:
return
PatchCatBoostModelIO.__patched = True
# noinspection PyBroadException
try:
from catboost import CatBoost, CatBoostClassifier, CatBoostRegressor, CatBoostRanker
CatBoost.save_model = _patched_call(CatBoost.save_model, PatchCatBoostModelIO._save)
CatBoost.load_model = _patched_call(CatBoost.load_model, PatchCatBoostModelIO._load)
PatchCatBoostModelIO.__callback_cls = PatchCatBoostModelIO._generate_training_callback_class()
CatBoost.fit = _patched_call(CatBoost.fit, PatchCatBoostModelIO._fit)
CatBoostClassifier.fit = _patched_call(CatBoostClassifier.fit, PatchCatBoostModelIO._fit)
CatBoostRegressor.fit = _patched_call(CatBoostRegressor.fit, PatchCatBoostModelIO._fit)
CatBoostRanker.fit = _patched_call(CatBoostRegressor.fit, PatchCatBoostModelIO._fit)
except ImportError:
pass
except Exception:
pass
@staticmethod
def _save(original_fn, obj, f, *args, **kwargs):
# see https://catboost.ai/en/docs/concepts/python-reference_catboost_save_model
ret = original_fn(obj, f, *args, **kwargs)
if not PatchCatBoostModelIO.__main_task:
return ret
if isinstance(f, six.string_types):
filename = f
else:
filename = None
# give the model a descriptive name based on the file name
# noinspection PyBroadException
try:
model_name = Path(filename).stem
except Exception:
model_name = None
WeightsFileHandler.create_output_model(
obj, filename, Framework.catboost, PatchCatBoostModelIO.__main_task, singlefile=True, model_name=model_name
)
return ret
@staticmethod
def _load(original_fn, f, *args, **kwargs):
# see https://catboost.ai/en/docs/concepts/python-reference_catboost_load_model
if isinstance(f, six.string_types):
filename = f
elif len(args) >= 1 and isinstance(args[0], six.string_types):
filename = args[0]
else:
filename = None
if not PatchCatBoostModelIO.__main_task:
return original_fn(f, *args, **kwargs)
# register input model
empty = _Empty()
model = original_fn(f, *args, **kwargs)
WeightsFileHandler.restore_weights_file(empty, filename, Framework.catboost, PatchCatBoostModelIO.__main_task)
if empty.trains_in_model:
# noinspection PyBroadException
try:
model.trains_in_model = empty.trains_in_model
except Exception:
pass
return model
@staticmethod
def _fit(original_fn, obj, *args, **kwargs):
callbacks = kwargs.get("callbacks") or []
kwargs["callbacks"] = callbacks + [PatchCatBoostModelIO.__callback_cls(task=PatchCatBoostModelIO.__main_task)]
return original_fn(obj, *args, **kwargs)
@staticmethod
def _generate_training_callback_class():
class ClearMLCallback:
def __init__(self, task):
self._logger = task.get_logger()
def after_iteration(self, info):
info = vars(info)
iteration = info.get("iteration")
for title, metric in (info.get("metrics") or {}).items():
for series, log in metric.items():
value = log[-1]
self._logger.report_scalar(title=title, series=series, value=value, iteration=iteration)
return True
return ClearMLCallback

View File

@ -51,6 +51,7 @@ class Framework(Options):
lightgbm = 'LightGBM'
parquet = 'Parquet'
megengine = 'MegEngine'
catboost = 'CatBoost'
__file_extensions_mapping = {
'.pb': (tensorflow, tensorflowjs, onnx, ),
@ -79,6 +80,7 @@ class Framework(Options):
'__model__': (paddlepaddle, ),
'.pkl': (scikitlearn, keras, xgboost, megengine),
'.parquet': (parquet, ),
'.cbm': (catboost, ),
}
@classmethod

View File

@ -44,6 +44,7 @@ from .binding.frameworks.lightgbm_bind import PatchLIGHTgbmModelIO
from .binding.frameworks.pytorch_bind import PatchPyTorchModelIO
from .binding.frameworks.tensorflow_bind import TensorflowBinding
from .binding.frameworks.xgboost_bind import PatchXGBoostModelIO
from .binding.frameworks.catboost_bind import PatchCatBoostModelIO
from .binding.frameworks.megengine_bind import PatchMegEngineModelIO
from .binding.joblib_bind import PatchedJoblib
from .binding.matplotlib_bind import PatchedMatplotlib
@ -370,7 +371,7 @@ class Task(_Task):
'matplotlib': True, 'tensorflow': True, 'tensorboard': True, 'pytorch': True,
'xgboost': True, 'scikit': True, 'fastai': True, 'lightgbm': True,
'hydra': True, 'detect_repository': True, 'tfdefines': True, 'joblib': True,
'megengine': True, 'jsonargparse': True,
'megengine': True, 'jsonargparse': True, 'catboost': True
}
:param bool auto_resource_monitoring: Automatically create machine resource monitoring plots
@ -583,6 +584,8 @@ class Task(_Task):
PatchMegEngineModelIO.update_current_task(task)
if is_auto_connect_frameworks_bool or auto_connect_frameworks.get('xgboost', True):
PatchXGBoostModelIO.update_current_task(task)
if is_auto_connect_frameworks_bool or auto_connect_frameworks.get('catboost', True):
PatchCatBoostModelIO.update_current_task(task)
if is_auto_connect_frameworks_bool or auto_connect_frameworks.get('fastai', True):
PatchFastai.update_current_task(task)
if is_auto_connect_frameworks_bool or auto_connect_frameworks.get('lightgbm', True):

View File

@ -0,0 +1,60 @@
# ClearML - Example of CatBoost training, saving model and loading model
#
import argparse
from catboost import CatBoostRegressor, Pool
from catboost.datasets import msrank
from clearml import Task
import numpy as np
from sklearn.model_selection import train_test_split
def main(iterations):
# Download train and validation datasets
train_df, test_df = msrank()
# Column 0 contains label values, column 1 contains group ids.
X_train, y_train = train_df.drop([0, 1], axis=1).values, train_df[0].values
X_test, y_test = test_df.drop([0, 1], axis=1).values, test_df[0].values
# Split train data into two parts. First part - for baseline model,
# second part - for major model
splitted_data = train_test_split(X_train, y_train, test_size=0.5)
X_train_first, X_train_second, y_train_first, y_train_second = splitted_data
catboost_model = CatBoostRegressor(iterations=iterations, verbose=False)
# Prepare simple baselines (just mean target on first part of train pool).
baseline_value = y_train_first.mean()
train_baseline = np.array([baseline_value] * y_train_second.shape[0])
test_baseline = np.array([baseline_value] * y_test.shape[0])
# Create pools
train_pool = Pool(X_train_second, y_train_second, baseline=train_baseline)
test_pool = Pool(X_test, y_test, baseline=test_baseline)
# Train CatBoost model
catboost_model.fit(train_pool, eval_set=test_pool, verbose=True, plot=False, save_snapshot=True)
catboost_model.save_model("example.cbm")
catboost_model = CatBoostRegressor()
catboost_model.load_model("example.cbm")
# Apply model on pool with baseline values
preds1 = catboost_model.predict(test_pool)
# Apply model on numpy.array and then add the baseline values
preds2 = test_baseline + catboost_model.predict(X_test)
# Check that preds have small diffs
assert (np.abs(preds1 - preds2) < 1e-6).all()
if __name__ == "__main__":
Task.init(project_name="examples", task_name="CatBoost simple example")
parser = argparse.ArgumentParser()
parser.add_argument("--iterations", default=200)
args = parser.parse_args()
main(args.iterations)

View File

@ -0,0 +1,4 @@
catboost
numpy == 1.19.2
scikit_learn
clearml