mirror of
https://github.com/clearml/clearml
synced 2025-02-07 05:18:50 +00:00
commit
d4e7eecbac
@ -59,7 +59,6 @@ import torchvision.models as models
|
||||
import copy
|
||||
from trains import Task
|
||||
|
||||
|
||||
task = Task.init(project_name='examples', task_name='pytorch with matplotlib example', task_type=Task.TaskTypes.testing)
|
||||
|
||||
|
||||
@ -96,6 +95,10 @@ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
# with name ``images`` in your current working directory.
|
||||
|
||||
# desired size of the output image
|
||||
|
||||
STYLE_IMAGE_PATH = "./samples/picasso.jpg"
|
||||
CONTENT_IMAGE_PATH = "./samples/dancing.jpg"
|
||||
|
||||
imsize = 512 if torch.cuda.is_available() else 128 # use small size if no gpu
|
||||
|
||||
loader = transforms.Compose([
|
||||
@ -110,8 +113,8 @@ def image_loader(image_name):
|
||||
return image.to(device, torch.float)
|
||||
|
||||
|
||||
style_img = image_loader("./samples/picasso.jpg")
|
||||
content_img = image_loader("./samples/dancing.jpg")
|
||||
style_img = image_loader(STYLE_IMAGE_PATH)
|
||||
content_img = image_loader(CONTENT_IMAGE_PATH)
|
||||
|
||||
assert style_img.size() == content_img.size(), \
|
||||
"we need to import style and content images of the same size"
|
||||
|
Loading…
Reference in New Issue
Block a user