mirror of
https://github.com/clearml/clearml
synced 2025-01-31 00:56:57 +00:00
Update README.md
This commit is contained in:
parent
906e711723
commit
d2297c32d8
24
README.md
24
README.md
@ -1,6 +1,6 @@
|
||||
<div align="center">
|
||||
|
||||
<a href="https://app.community.clear.ml"><img src="https://github.com/allegroai/trains/blob/master/docs/clearml-logo.svg?raw=true" width="250px"></a>
|
||||
<a href="https://app.community.clear.ml"><img src="https://github.com/allegroai/clearml/blob/master/docs/clearml-logo.svg?raw=true" width="250px"></a>
|
||||
|
||||
|
||||
**ClearML - Auto-Magical Suite of tools to streamline your ML workflow
|
||||
@ -20,9 +20,9 @@ Experiment Manager, ML-Ops and Data-Management**
|
||||
#### *Formerly known as Allegro Trains*
|
||||
ClearML is a ML/DL development and production suite, it contains three main modules:
|
||||
|
||||
- [Experiment Manager](#clearml-experiment-management) - Automagical experiment tracking, environments and results
|
||||
- [ML-Ops](https://github.com/allegroai/trains-agent) - Automation, Pipelines & Orchestration solution for ML/DL jobs (K8s / Cloud / bare-metal)
|
||||
- [Data-Management](https://github.com/allegroai/clearml/doc/clearml-data.md) - Fully differentiable data management & version control solution on top of object-storage
|
||||
- [Experiment Manager](#clearml-experiment-manager) - Automagical experiment tracking, environments and results
|
||||
- [ML-Ops](https://github.com/allegroai/clearml-agent) - Automation, Pipelines & Orchestration solution for ML/DL jobs (K8s / Cloud / bare-metal)
|
||||
- [Data-Management](https://github.com/allegroai/clearml/blob/master/docs/clearml-task.md) - Fully differentiable data management & version control solution on top of object-storage
|
||||
(S3/GS/Azure/NAS)
|
||||
|
||||
|
||||
@ -37,7 +37,7 @@ Instrumenting these components is the **ClearML-server**, see [Self-Hosting]() &
|
||||
</div>
|
||||
|
||||
---
|
||||
<a href="https://app.community.clear.ml"><img src="https://github.com/allegroai/trains/blob/master/docs/webapp_screenshots.gif?raw=true" width="100%"></a>
|
||||
<a href="https://app.community.clear.ml"><img src="https://github.com/allegroai/clearml/blob/master/docs/webapp_screenshots.gif?raw=true" width="100%"></a>
|
||||
|
||||
## ClearML Experiment Manager
|
||||
|
||||
@ -58,10 +58,10 @@ Instrumenting these components is the **ClearML-server**, see [Self-Hosting]() &
|
||||
* Model snapshots (With optional automatic upload to central storage: Shared folder, S3, GS, Azure, Http)
|
||||
* Artifacts log & store (Shared folder, S3, GS, Azure, Http)
|
||||
* Tensorboard/TensorboardX scalars, metrics, histograms, **images, audio and video samples**
|
||||
* [Matplotlib & Seaborn](https://github.com/allegroai/trains/tree/master/examples/frameworks/matplotlib)
|
||||
* [Matplotlib & Seaborn](https://github.com/allegroai/clearml/tree/master/examples/frameworks/matplotlib)
|
||||
* [ClearML Explicit Logging](https://allegro.ai/clearml/docs/examples/reporting/) interface for complete flexibility.
|
||||
* Extensive platform support and integrations
|
||||
* Supported ML/DL frameworks: [PyTorch](https://github.com/allegroai/trains/tree/master/examples/frameworks/pytorch)(incl' ignite/lightning), [Tensorflow](https://github.com/allegroai/trains/tree/master/examples/frameworks/tensorflow), [Keras](https://github.com/allegroai/trains/tree/master/examples/frameworks/keras), [AutoKeras](https://github.com/allegroai/trains/tree/master/examples/frameworks/autokeras), [XGBoost](https://github.com/allegroai/trains/tree/master/examples/frameworks/xgboost) and [Scikit-Learn](https://github.com/allegroai/trains/tree/master/examples/frameworks/scikit-learn)
|
||||
* Supported ML/DL frameworks: [PyTorch](https://github.com/allegroai/clearml/tree/master/examples/frameworks/pytorch)(incl' ignite/lightning), [Tensorflow](https://github.com/allegroai/clearml/tree/master/examples/frameworks/tensorflow), [Keras](https://github.com/allegroai/clearml/tree/master/examples/frameworks/keras), [AutoKeras](https://github.com/allegroai/clearml/tree/master/examples/frameworks/autokeras), [XGBoost](https://github.com/allegroai/clearml/tree/master/examples/frameworks/xgboost) and [Scikit-Learn](https://github.com/allegroai/clearml/tree/master/examples/frameworks/scikit-learn)
|
||||
* Seamless integration (including version control) with **Jupyter Notebook**
|
||||
and [*PyCharm* remote debugging](https://github.com/allegroai/trains-pycharm-plugin)
|
||||
|
||||
@ -93,8 +93,8 @@ The ClearML run-time components:
|
||||
## Additional Modules
|
||||
|
||||
- [clearml-session](https://github.com/allegroai/clearml-session) - **Launch remote JupyterLab / VSCode-server inside any docker, on Cloud/On-Prem machines**
|
||||
- [clearml-task](https://github.com/allegroai/clearml/doc/clearml-task.md) - Run any codebase on remote machines with full remote logging of Tensorboard, Matplotlib & Console outputs
|
||||
- [clearml-data](https://github.com/allegroai/clearml/doc/clearml-data.md) - **CLI for managing and versioning your datasets, including creating / uploading / downloading of data from S3/GS/Azure/NAS**
|
||||
- [clearml-task](https://github.com/allegroai/clearml/blob/master/docs/clearml-task.md) - Run any codebase on remote machines with full remote logging of Tensorboard, Matplotlib & Console outputs
|
||||
- [clearml-data](https://github.com/allegroai/clearml/blob/master/docs/datasets.md) - **CLI for managing and versioning your datasets, including creating / uploading / downloading of data from S3/GS/Azure/NAS**
|
||||
- [AWS Auto-Scaler](examples/services/aws-autoscaler/aws_autoscaler.py) - Automatically spin EC2 instances based on your workloads with preconfigured budget! No need for K8s!
|
||||
- [Hyper-Parameter Optimization](examples/services/hyper-parameter-optimization/hyper_parameter_optimizer.py) - Optimize any code with black-box approach and state of the art Bayesian optimization algorithms
|
||||
- [Automation Pipeline](examples/pipeline/pipeline_controller.py) - Build pipelines based on existing experiments / jobs, supports building pipelines of pipelines!
|
||||
@ -138,17 +138,17 @@ Apache License, Version 2.0 (see the [LICENSE](https://www.apache.org/licenses/L
|
||||
|
||||
More information in the [official documentation](https://allegro.ai//clearml/docs) and [on YouTube](https://www.youtube.com/c/AllegroAI).
|
||||
|
||||
For examples and use cases, check the [examples folder](https://github.com/allegroai/trains/tree/master/examples) and [corresponding documentation](https://allegro.ai/clearml/docs/examples/examples_overview/).
|
||||
For examples and use cases, check the [examples folder](https://github.com/allegroai/clearml/tree/master/examples) and [corresponding documentation](https://allegro.ai/clearml/docs/examples/examples_overview/).
|
||||
|
||||
If you have any questions: post on our [Slack Channel](https://join.slack.com/t/allegroai-trains/shared_invite/enQtOTQyMTI1MzQxMzE4LTY5NTUxOTY1NmQ1MzQ5MjRhMGRhZmM4ODE5NTNjMTg2NTBlZGQzZGVkMWU3ZDg1MGE1MjQxNDEzMWU2NmVjZmY), or tag your questions on [stackoverflow](https://stackoverflow.com/questions/tagged/trains) with '**trains**' tag.
|
||||
|
||||
For feature requests or bug reports, please use [GitHub issues](https://github.com/allegroai/trains/issues).
|
||||
For feature requests or bug reports, please use [GitHub issues](https://github.com/allegroai/clearml/issues).
|
||||
|
||||
Additionally, you can always find us at *clearml@allegro.ai*
|
||||
|
||||
## Contributing
|
||||
|
||||
See the ClearML [Guidelines for Contributing](https://github.com/allegroai/trains/blob/master/docs/contributing.md).
|
||||
See the ClearML [Guidelines for Contributing](https://github.com/allegroai/clearml/blob/master/docs/contributing.md).
|
||||
|
||||
|
||||
_May the force (and the goddess of learning rates) be with you!_
|
||||
|
Loading…
Reference in New Issue
Block a user