mirror of
https://github.com/clearml/clearml
synced 2025-01-31 09:07:00 +00:00
Removed old example
This commit is contained in:
parent
53d0da373f
commit
d12b1e114b
@ -1,247 +0,0 @@
|
||||
# TRAINS Usage Examples
|
||||
|
||||
## Introduction
|
||||
TRAINS includes usage examples for the *Keras*, *PyTorch*, and *TensorFlow* deep learning frameworks,
|
||||
as well as *Jupyter Notebook* integration and custom examples for reporting metrics, configuring models.
|
||||
You can run these examples and view their results on the TRAINS Web-App.
|
||||
|
||||
The examples are described below, including a link for the source code
|
||||
and expected results for each run.
|
||||
* For each example, only two lines of TRAINS integration code, were added
|
||||
|
||||
from trains import Task
|
||||
task = Task.init(project_name=”examples”, task_name=”description”)
|
||||
|
||||
## Viewing experiment results
|
||||
|
||||
In order to view an experiment's results (or other details) you can either:
|
||||
|
||||
1. Open the TRAINS Web-App in your browser and login.
|
||||
2. On the Home page, in the *recent project* section, click the card for the project containing the experiment
|
||||
(example experiments can be found under the *examples* project card).
|
||||
3. In the *Experiments* tab, click your experiment. The details panel slides open.
|
||||
4. Choose the experiment details by clicking one of the information tabs.
|
||||
|
||||
OR
|
||||
|
||||
1. While running the experiment, a direct link for a dedicated results page is printed.
|
||||
|
||||
|
||||
# Keras Examples
|
||||
|
||||
### Keras with TensorBoard - MNIST Training
|
||||
|
||||
[keras_tensorboard.py](https://github.com/allegroai/trains/blob/master/examples/keras_tensorboard.py)
|
||||
is an example of training a small convolutional NN on the MNIST DataSet.
|
||||
|
||||
Relevant outputs
|
||||
|
||||
* **EXECUTION**
|
||||
* **HYPER PARAMETERS**: Command line arguments
|
||||
* **MODEL**
|
||||
* Input model weights, if executed for the second time (loaded from the previous checkpoint)
|
||||
* Input model’s creator experiment (a link to the experiment details in the *EXPERIMENTS* page)
|
||||
* Output model + Configuration
|
||||
* **RESULTS**
|
||||
* **SCALARS**: Accuracy/loss scalar metric graphs
|
||||
* **PLOTS**: Convolution weights histograms
|
||||
* **LOG**: Console standard output/error
|
||||
|
||||
# Pytorch Examples
|
||||
|
||||
### PyTorch - MNIST Training
|
||||
|
||||
[pytorch_mnist.py](https://github.com/allegroai/trains/blob/master/examples/pytorch_mnist.py) is an example
|
||||
of PyTorch MNIST training integration.
|
||||
|
||||
Relevant outputs
|
||||
|
||||
* **EXECUTION**
|
||||
* **HYPER PARAMETERS**: Command line arguments
|
||||
* **MODEL**
|
||||
* Input model weights, if executed for the second time (loaded from the previous checkpoint)
|
||||
* Input model’s creator experiment (a link to the experiment details in the *EXPERIMENTS* page)
|
||||
* Output model (a link to the output model details in the *MODELS* page)
|
||||
* **RESULTS**
|
||||
* **LOG**: Console standard output/error
|
||||
|
||||
### PyTorch and Matplotlib - Testing Style Transfer
|
||||
|
||||
[pytorch_matplotlib.py](https://github.com/allegroai/trains/blob/master/examples/pytorch_matplotlib.py)
|
||||
is an example of
|
||||
connecting the neural style transfer from the official PyTorch tutorial to TRAINS.
|
||||
Neural-Style, or Neural-Transfer, allows you to take an image and
|
||||
reproduce it with a new artistic style. The algorithm takes three images
|
||||
(an input image, a content-image, and a style-image) and change the input
|
||||
to resemble the content of the content-image and the artistic style of the style-image.
|
||||
|
||||
Relevant outputs
|
||||
|
||||
* **EXECUTION**
|
||||
* **HYPER PARAMETERS**: Command line arguments
|
||||
* **MODEL**
|
||||
* Input model (a link to the input model details in the *MODELS* page)
|
||||
* Output model (a link to the output model details in the *MODELS* page)
|
||||
* **RESULTS**
|
||||
* **DEBUG IMAGES**: Input image, input style images, an output transferred style image
|
||||
* **LOG**: Console standard output/error
|
||||
|
||||
### PyTorch with Tensorboard - MNIST Train
|
||||
|
||||
[pytorch_tensorboard.py](https://github.com/allegroai/trains/blob/master/examples/pytorch_tensorboard.py)
|
||||
is an example of PyTorch MNIST training running with Tensorboard
|
||||
|
||||
Relevant outputs
|
||||
|
||||
* **EXECUTION**
|
||||
* **HYPER PARAMETERS**: Command line arguments
|
||||
* **MODEL**
|
||||
* Input model, if executed for the second time (a link to the input model details in the *MODELS* page)
|
||||
* Input model’s creator experiment (a link to the experiment details in the *EXPERIMENTS* page)
|
||||
* Output model (a link to the output model details in the *MODELS* page)
|
||||
* **RESULTS**
|
||||
* **SCALARS**: Train and test loss scalars
|
||||
* **LOG**: Console standard output/error
|
||||
|
||||
### PyTorch with tensorboardX - MNIST Train
|
||||
|
||||
[pytorch_tensorboardX.py](https://github.com/allegroai/trains/blob/master/examples/pytorch_tensorboardX.py)
|
||||
is an example of PyTorch MNIST training running with tensorboardX
|
||||
|
||||
Relevant outputs
|
||||
|
||||
* **EXECUTION**
|
||||
* **HYPER PARAMETERS**: Command line arguments
|
||||
* **MODEL**
|
||||
* Input model, if executed for the second time (a link to the input model details in the *MODELS* page)
|
||||
* Input model’s creator experiment (a link to the experiment details in the *EXPERIMENTS* page)
|
||||
* Output model (a link to the output model details in the *MODELS* page)
|
||||
* **RESULTS**
|
||||
* **SCALARS**: Train and test loss scalars
|
||||
* **LOG**: Console standard output/error
|
||||
|
||||
# TensorFlow Examples
|
||||
|
||||
### TensorBoard with TensorFlow (without Training)
|
||||
|
||||
[tensorboard_toy.py](https://github.com/allegroai/trains/blob/master/examples/tensorboard_toy.py)
|
||||
is a toy example of TensorBoard.
|
||||
|
||||
**View Example Output**
|
||||
|
||||
Relevant outputs
|
||||
|
||||
* **EXECUTION**
|
||||
* **HYPER PARAMETERS**: Command line arguments
|
||||
* **RESULTS**
|
||||
* **SCALARS**: Random variable samples scalars
|
||||
* **PLOTS**: Random variable samples histograms
|
||||
* **DEBUG IMAGES**: Test images
|
||||
* **LOG**: Console standard output/error
|
||||
|
||||
### TensorFlow in Eager Mode
|
||||
|
||||
[tensorflow_eager.py](https://github.com/allegroai/trains/blob/master/examples/tensorflow_eager.py)
|
||||
is an example of running Tensorflow in eager mode
|
||||
|
||||
Relevant outputs
|
||||
|
||||
* **EXECUTION**
|
||||
* **HYPER PARAMETERS**: Command line arguments
|
||||
* **RESULTS**
|
||||
* **SCALARS**: Generator and discriminator loss
|
||||
* **DEBUG IMAGES**: Generated images
|
||||
* **LOG**: Console standard output/error
|
||||
|
||||
### TensorBoard Plugin - Precision Recall Curves
|
||||
|
||||
[tensorboard_pr_curve.py](https://github.com/allegroai/trains/blob/master/examples/tensorboard_pr_curve.py)
|
||||
is an example of TensorBoard precision recall curves
|
||||
|
||||
Relevant outputs
|
||||
|
||||
* **EXECUTION**
|
||||
* **HYPER PARAMETERS**: Command line arguments
|
||||
* **RESULTS**
|
||||
* **PLOTS**: Precision recall curves
|
||||
* **DEBUG IMAGES**: Generated images
|
||||
* **LOG**: Console standard output/error
|
||||
|
||||
### Hyper Parameters / Tensorflow Flags / absl
|
||||
##### Hyper Parameters / Toy Tensorflow FLAGS logging with absl
|
||||
|
||||
[hyper_parameters_example.py](https://github.com/allegroai/trains/blob/master/examples/hyper_parameters_example.py)
|
||||
is an example of toy Tensorflow FLAGS logging with absl package (*absl-py*) coupled with parameters dictionary
|
||||
|
||||
Relevant outputs
|
||||
|
||||
* **EXECUTION**
|
||||
* **HYPER PARAMETERS**: Tensorflow flags (with 'TF_DEFINE/' prefix)
|
||||
* **RESULTS**
|
||||
* **LOG**: Console standard output/error
|
||||
|
||||
### TensorFlow MNIST Classifier with TensorBoard Reports
|
||||
|
||||
[tensorflow_mnist_with_summaries.py](https://github.com/allegroai/trains/blob/master/examples/tensorflow_mnist_with_summaries.py)
|
||||
is an example of Tensorflow MNIST with TensorBoard summary, model storage, and logging.
|
||||
|
||||
Relevant outputs
|
||||
|
||||
* **EXECUTION**
|
||||
* **HYPER PARAMETERS**: Command line arguments
|
||||
* **MODEL**
|
||||
* Output model (a link to the output model details in the *MODELS* page)
|
||||
* **RESULTS**
|
||||
* **SCALARS**: Network statistics across the training steps (e.g., cross entropy, dropout, and specific layer statistics)
|
||||
* **PLOTS**: Convolutional layer histogram
|
||||
* **DEBUG IMAGES**: Sample of the network input images
|
||||
* **LOG**: Console standard output/error
|
||||
|
||||
|
||||
# *Jupyter Notebook* Example
|
||||
|
||||
[jupyter.ipynb](https://github.com/allegroai/trains/blob/master/examples/jupyter.ipynb)
|
||||
is an example of integrating matplotlib and training with keras on
|
||||
*Jupyter Notebook*.
|
||||
This example connects a parameters dictionary, prints simple graphs and trains an MNIST classifier using Keras.
|
||||
|
||||
Relevant Outputs
|
||||
|
||||
* **EXECUTION**
|
||||
* **HYPER PARAMETERS**: Parameter dictionary
|
||||
* **MODEL**
|
||||
* Output model (a link to the output model details in the *MODELS* page)
|
||||
* Model Configuration
|
||||
* **RESULTS**
|
||||
* **SCALARS**: Training loss across iterations
|
||||
* **PLOTS**: Sine and circles plots, convolution weights histogram
|
||||
* **LOG**: Console standard output/error
|
||||
|
||||
|
||||
# Custom Examples
|
||||
|
||||
### Manual Reporting
|
||||
|
||||
[manual_reporting.py](https://github.com/allegroai/trains/blob/master/examples/manual_reporting.py)
|
||||
is an example of manually reporting graphs and statistics.
|
||||
|
||||
Relevant outputs
|
||||
|
||||
* **RESULTS**
|
||||
* **SCALARS**: Scalar graphs
|
||||
* **PLOTS**: Confusion matrix, histogram, 2D scatter plot, 3D scatter plot
|
||||
* **DEBUG IMAGES**: Uploaded example images
|
||||
* **LOG**: Console standard output/error
|
||||
|
||||
### Manual Model Configuration
|
||||
|
||||
[manual_model_config.py](https://github.com/allegroai/trains/blob/master/examples/manual_model_config.py)
|
||||
is an example of manually configuring a model, model storage, label enumeration values, and logging.
|
||||
|
||||
Relevant Outputs
|
||||
|
||||
* **MODEL**
|
||||
* Output model (a link to the output model details in the *MODELS* page, including **label enumeration** values)
|
||||
* Model Configuration
|
||||
* **RESULTS**
|
||||
* **LOG**: Console standard output/error
|
Loading…
Reference in New Issue
Block a user