Removed old example

This commit is contained in:
allegroai 2020-06-22 17:12:02 +03:00
parent 53d0da373f
commit d12b1e114b

View File

@ -1,247 +0,0 @@
# TRAINS Usage Examples
## Introduction
TRAINS includes usage examples for the *Keras*, *PyTorch*, and *TensorFlow* deep learning frameworks,
as well as *Jupyter Notebook* integration and custom examples for reporting metrics, configuring models.
You can run these examples and view their results on the TRAINS Web-App.
The examples are described below, including a link for the source code
and expected results for each run.
* For each example, only two lines of TRAINS integration code, were added
from trains import Task
task = Task.init(project_name=”examples”, task_name=”description”)
## Viewing experiment results
In order to view an experiment's results (or other details) you can either:
1. Open the TRAINS Web-App in your browser and login.
2. On the Home page, in the *recent project* section, click the card for the project containing the experiment
(example experiments can be found under the *examples* project card).
3. In the *Experiments* tab, click your experiment. The details panel slides open.
4. Choose the experiment details by clicking one of the information tabs.
OR
1. While running the experiment, a direct link for a dedicated results page is printed.
# Keras Examples
### Keras with TensorBoard - MNIST Training
[keras_tensorboard.py](https://github.com/allegroai/trains/blob/master/examples/keras_tensorboard.py)
is an example of training a small convolutional NN on the MNIST DataSet.
Relevant outputs
* **EXECUTION**
* **HYPER PARAMETERS**: Command line arguments
* **MODEL**
* Input model weights, if executed for the second time (loaded from the previous checkpoint)
* Input models creator experiment (a link to the experiment details in the *EXPERIMENTS* page)
* Output model + Configuration
* **RESULTS**
* **SCALARS**: Accuracy/loss scalar metric graphs
* **PLOTS**: Convolution weights histograms
* **LOG**: Console standard output/error
# Pytorch Examples
### PyTorch - MNIST Training
[pytorch_mnist.py](https://github.com/allegroai/trains/blob/master/examples/pytorch_mnist.py) is an example
of PyTorch MNIST training integration.
Relevant outputs
* **EXECUTION**
* **HYPER PARAMETERS**: Command line arguments
* **MODEL**
* Input model weights, if executed for the second time (loaded from the previous checkpoint)
* Input models creator experiment (a link to the experiment details in the *EXPERIMENTS* page)
* Output model (a link to the output model details in the *MODELS* page)
* **RESULTS**
* **LOG**: Console standard output/error
### PyTorch and Matplotlib - Testing Style Transfer
[pytorch_matplotlib.py](https://github.com/allegroai/trains/blob/master/examples/pytorch_matplotlib.py)
is an example of
connecting the neural style transfer from the official PyTorch tutorial to TRAINS.
Neural-Style, or Neural-Transfer, allows you to take an image and
reproduce it with a new artistic style. The algorithm takes three images
(an input image, a content-image, and a style-image) and change the input
to resemble the content of the content-image and the artistic style of the style-image.
Relevant outputs
* **EXECUTION**
* **HYPER PARAMETERS**: Command line arguments
* **MODEL**
* Input model (a link to the input model details in the *MODELS* page)
* Output model (a link to the output model details in the *MODELS* page)
* **RESULTS**
* **DEBUG IMAGES**: Input image, input style images, an output transferred style image
* **LOG**: Console standard output/error
### PyTorch with Tensorboard - MNIST Train
[pytorch_tensorboard.py](https://github.com/allegroai/trains/blob/master/examples/pytorch_tensorboard.py)
is an example of PyTorch MNIST training running with Tensorboard
Relevant outputs
* **EXECUTION**
* **HYPER PARAMETERS**: Command line arguments
* **MODEL**
* Input model, if executed for the second time (a link to the input model details in the *MODELS* page)
* Input models creator experiment (a link to the experiment details in the *EXPERIMENTS* page)
* Output model (a link to the output model details in the *MODELS* page)
* **RESULTS**
* **SCALARS**: Train and test loss scalars
* **LOG**: Console standard output/error
### PyTorch with tensorboardX - MNIST Train
[pytorch_tensorboardX.py](https://github.com/allegroai/trains/blob/master/examples/pytorch_tensorboardX.py)
is an example of PyTorch MNIST training running with tensorboardX
Relevant outputs
* **EXECUTION**
* **HYPER PARAMETERS**: Command line arguments
* **MODEL**
* Input model, if executed for the second time (a link to the input model details in the *MODELS* page)
* Input models creator experiment (a link to the experiment details in the *EXPERIMENTS* page)
* Output model (a link to the output model details in the *MODELS* page)
* **RESULTS**
* **SCALARS**: Train and test loss scalars
* **LOG**: Console standard output/error
# TensorFlow Examples
### TensorBoard with TensorFlow (without Training)
[tensorboard_toy.py](https://github.com/allegroai/trains/blob/master/examples/tensorboard_toy.py)
is a toy example of TensorBoard.
**View Example Output**
Relevant outputs
* **EXECUTION**
* **HYPER PARAMETERS**: Command line arguments
* **RESULTS**
* **SCALARS**: Random variable samples scalars
* **PLOTS**: Random variable samples histograms
* **DEBUG IMAGES**: Test images
* **LOG**: Console standard output/error
### TensorFlow in Eager Mode
[tensorflow_eager.py](https://github.com/allegroai/trains/blob/master/examples/tensorflow_eager.py)
is an example of running Tensorflow in eager mode
Relevant outputs
* **EXECUTION**
* **HYPER PARAMETERS**: Command line arguments
* **RESULTS**
* **SCALARS**: Generator and discriminator loss
* **DEBUG IMAGES**: Generated images
* **LOG**: Console standard output/error
### TensorBoard Plugin - Precision Recall Curves
[tensorboard_pr_curve.py](https://github.com/allegroai/trains/blob/master/examples/tensorboard_pr_curve.py)
is an example of TensorBoard precision recall curves
Relevant outputs
* **EXECUTION**
* **HYPER PARAMETERS**: Command line arguments
* **RESULTS**
* **PLOTS**: Precision recall curves
* **DEBUG IMAGES**: Generated images
* **LOG**: Console standard output/error
### Hyper Parameters / Tensorflow Flags / absl
##### Hyper Parameters / Toy Tensorflow FLAGS logging with absl
[hyper_parameters_example.py](https://github.com/allegroai/trains/blob/master/examples/hyper_parameters_example.py)
is an example of toy Tensorflow FLAGS logging with absl package (*absl-py*) coupled with parameters dictionary
Relevant outputs
* **EXECUTION**
* **HYPER PARAMETERS**: Tensorflow flags (with 'TF_DEFINE/' prefix)
* **RESULTS**
* **LOG**: Console standard output/error
### TensorFlow MNIST Classifier with TensorBoard Reports
[tensorflow_mnist_with_summaries.py](https://github.com/allegroai/trains/blob/master/examples/tensorflow_mnist_with_summaries.py)
is an example of Tensorflow MNIST with TensorBoard summary, model storage, and logging.
Relevant outputs
* **EXECUTION**
* **HYPER PARAMETERS**: Command line arguments
* **MODEL**
* Output model (a link to the output model details in the *MODELS* page)
* **RESULTS**
* **SCALARS**: Network statistics across the training steps (e.g., cross entropy, dropout, and specific layer statistics)
* **PLOTS**: Convolutional layer histogram
* **DEBUG IMAGES**: Sample of the network input images
* **LOG**: Console standard output/error
# *Jupyter Notebook* Example
[jupyter.ipynb](https://github.com/allegroai/trains/blob/master/examples/jupyter.ipynb)
is an example of integrating matplotlib and training with keras on
*Jupyter Notebook*.
This example connects a parameters dictionary, prints simple graphs and trains an MNIST classifier using Keras.
Relevant Outputs
* **EXECUTION**
* **HYPER PARAMETERS**: Parameter dictionary
* **MODEL**
* Output model (a link to the output model details in the *MODELS* page)
* Model Configuration
* **RESULTS**
* **SCALARS**: Training loss across iterations
* **PLOTS**: Sine and circles plots, convolution weights histogram
* **LOG**: Console standard output/error
# Custom Examples
### Manual Reporting
[manual_reporting.py](https://github.com/allegroai/trains/blob/master/examples/manual_reporting.py)
is an example of manually reporting graphs and statistics.
Relevant outputs
* **RESULTS**
* **SCALARS**: Scalar graphs
* **PLOTS**: Confusion matrix, histogram, 2D scatter plot, 3D scatter plot
* **DEBUG IMAGES**: Uploaded example images
* **LOG**: Console standard output/error
### Manual Model Configuration
[manual_model_config.py](https://github.com/allegroai/trains/blob/master/examples/manual_model_config.py)
is an example of manually configuring a model, model storage, label enumeration values, and logging.
Relevant Outputs
* **MODEL**
* Output model (a link to the output model details in the *MODELS* page, including **label enumeration** values)
* Model Configuration
* **RESULTS**
* **LOG**: Console standard output/error