mirror of
				https://github.com/clearml/clearml
				synced 2025-06-26 18:16:07 +00:00 
			
		
		
		
	Documentation
This commit is contained in:
		
							parent
							
								
									c1d856d871
								
							
						
					
					
						commit
						d06468b09d
					
				| @ -2,7 +2,7 @@ | ||||
| 
 | ||||
| ## Introduction | ||||
| TRAINS includes usage examples for the *Keras*, *PyTorch*, and *TensorFlow* deep learning frameworks,  | ||||
| as well as custom examples. | ||||
| as well as *Jupyter Notebook* integration and custom examples for reporting metrics, configuring models. | ||||
| You can run these examples and view their results on the TRAINS Web-App. | ||||
| 
 | ||||
| The examples are described below, including a link for the source code | ||||
| @ -32,9 +32,10 @@ OR | ||||
| ### Keras with TensorBoard - MNIST Training | ||||
| 
 | ||||
| [keras_tensorboard.py](https://github.com/allegroai/trains/blob/master/examples/keras_tensorboard.py) | ||||
| is an example of training a simple deep NN on the MNIST DataSet. | ||||
| is an example of training a small convolutional NN on the MNIST DataSet. | ||||
| 
 | ||||
| Relevant outputs | ||||
| 
 | ||||
| * **EXECUTION** | ||||
|     * **HYPER PARAMETERS**: Command line arguments | ||||
| * **MODEL** | ||||
| @ -54,6 +55,7 @@ Relevant outputs | ||||
| of PyTorch MNIST training integration. | ||||
| 
 | ||||
| Relevant outputs | ||||
| 
 | ||||
| * **EXECUTION** | ||||
|     * **HYPER PARAMETERS**: Command line arguments | ||||
| * **MODEL** | ||||
| @ -74,6 +76,7 @@ reproduce it with a new artistic style. The algorithm takes three images | ||||
| to resemble the content of the content-image and the artistic style of the style-image. | ||||
| 
 | ||||
| Relevant outputs | ||||
| 
 | ||||
| * **EXECUTION** | ||||
|     * **HYPER PARAMETERS**: Command line arguments | ||||
| * **MODEL** | ||||
| @ -100,7 +103,7 @@ Relevant outputs | ||||
|     * **SCALARS**: Train and test loss scalars | ||||
|     * **LOG**: Console standard output/error | ||||
| 
 | ||||
| ### PyTorch with tensorboardX | ||||
| ### PyTorch with tensorboardX - MNIST Train | ||||
| 
 | ||||
| [pytorch_tensorboardX.py](https://github.com/allegroai/trains/blob/master/examples/pytorch_tensorboardX.py) | ||||
| is an example of PyTorch MNIST training running with tensorboardX | ||||
| @ -168,13 +171,77 @@ Relevant outputs | ||||
| ##### Toy Tensorflow FLAGS logging with absl | ||||
| 
 | ||||
| [absl_example.py](https://github.com/allegroai/trains/blob/master/examples/absl_example.py)  | ||||
| is an example of toy Tensorflow FLAGS logging with absl package (*absl-py*) | ||||
| is an example of toy Tensorflow FLAGS logging with absl package (*absl-py*) coupled with parameters dictionary | ||||
| 
 | ||||
| Relevant outputs | ||||
| 
 | ||||
| * **EXECUTION** | ||||
|     * **HYPER PARAMETERS**: Tensorflow flags (with 'TF_DEFINE/' prefix) | ||||
| * **RESULTS** | ||||
|     * **LOG**: Console standard output/error | ||||
| 
 | ||||
| ### TensorFlow MNIST Classifier with TensorBoard Reports | ||||
| 
 | ||||
| [tensorflow_mnist_with_summaries.py](https://github.com/allegroai/trains/blob/master/examples/tensorflow_mnist_with_summaries.py) | ||||
| is an example of Tensorflow MNIST with TensorBoard summary, model storage, and logging. | ||||
| 
 | ||||
| Relevant outputs | ||||
| 
 | ||||
| * **EXECUTION** | ||||
|     * **HYPER PARAMETERS**: Command line arguments | ||||
| * **MODEL** | ||||
|     * Output model (a link to the output model details in the *MODELS* page) | ||||
| * **RESULTS** | ||||
|     * **SCALARS**: Network statistics across the training steps (e.g., cross entropy, dropout, and specific layer statistics)  | ||||
|     * **PLOTS**: Convolutional layer histogram | ||||
|     * **DEBUG IMAGES**: Sample of the network input images | ||||
|     * **LOG**: Console standard output/error | ||||
| 
 | ||||
| 
 | ||||
| # *Jupyter Notebook* Example | ||||
| 
 | ||||
| [jupyter.ipynb](https://github.com/allegroai/trains/blob/master/examples/jupyter.ipynb) | ||||
| is an example of integrating matplotlib and training with keras on | ||||
| *Jupyter Notebook*.  | ||||
| This example connects a parameters dictionary, prints simple graphs and trains an MNIST classifier using Keras. | ||||
|   | ||||
| Relevant Outputs | ||||
| 
 | ||||
| * **EXECUTION** | ||||
|     * **HYPER PARAMETERS**: Parameter dictionary | ||||
| * **MODEL** | ||||
|     * Output model (a link to the output model details in the *MODELS* page) | ||||
|     * Model Configuration | ||||
| * **RESULTS** | ||||
|     * **SCALARS**: Training loss across iterations | ||||
|     * **PLOTS**: Sine and circles plots, convolution weights histogram | ||||
|     * **LOG**: Console standard output/error | ||||
|      | ||||
|      | ||||
| # Custom Examples | ||||
| 
 | ||||
| ### Manual Reporting | ||||
| 
 | ||||
| [manual_reporting.py](https://github.com/allegroai/trains/blob/master/examples/manual_reporting.py) | ||||
| is an example of manually reporting graphs and statistics. | ||||
| 
 | ||||
| Relevant outputs | ||||
| 
 | ||||
| * **RESULTS** | ||||
|     * **SCALARS**: Scalar graphs | ||||
|     * **PLOTS**: Confusion matrix, histogram, 2D scatter plot, 3D scatter plot | ||||
|     * **DEBUG IMAGES**: Uploaded example images | ||||
|     * **LOG**: Console standard output/error | ||||
|      | ||||
| ### Manual Model Configuration | ||||
| 
 | ||||
| [manual_model_config.py](https://github.com/allegroai/trains/blob/master/examples/manual_model_config.py) | ||||
| is an example of manually configuring a model, model storage, label enumeration values, and logging. | ||||
| 
 | ||||
| Relevant Outputs | ||||
| 
 | ||||
| * **MODEL** | ||||
|     * Output model (a link to the output model details in the *MODELS* page, including **label enumeration** values) | ||||
|     * Model Configuration  | ||||
| * **RESULTS** | ||||
|     * **LOG**: Console standard output/error | ||||
|  | ||||
										
											
												File diff suppressed because one or more lines are too long
											
										
									
								
							
		Loading…
	
		Reference in New Issue
	
	Block a user
	 allegroai
						allegroai