mirror of
https://github.com/clearml/clearml
synced 2025-02-07 05:18:50 +00:00
Documentation
This commit is contained in:
parent
c1d856d871
commit
d06468b09d
@ -2,7 +2,7 @@
|
||||
|
||||
## Introduction
|
||||
TRAINS includes usage examples for the *Keras*, *PyTorch*, and *TensorFlow* deep learning frameworks,
|
||||
as well as custom examples.
|
||||
as well as *Jupyter Notebook* integration and custom examples for reporting metrics, configuring models.
|
||||
You can run these examples and view their results on the TRAINS Web-App.
|
||||
|
||||
The examples are described below, including a link for the source code
|
||||
@ -32,9 +32,10 @@ OR
|
||||
### Keras with TensorBoard - MNIST Training
|
||||
|
||||
[keras_tensorboard.py](https://github.com/allegroai/trains/blob/master/examples/keras_tensorboard.py)
|
||||
is an example of training a simple deep NN on the MNIST DataSet.
|
||||
is an example of training a small convolutional NN on the MNIST DataSet.
|
||||
|
||||
Relevant outputs
|
||||
|
||||
* **EXECUTION**
|
||||
* **HYPER PARAMETERS**: Command line arguments
|
||||
* **MODEL**
|
||||
@ -54,6 +55,7 @@ Relevant outputs
|
||||
of PyTorch MNIST training integration.
|
||||
|
||||
Relevant outputs
|
||||
|
||||
* **EXECUTION**
|
||||
* **HYPER PARAMETERS**: Command line arguments
|
||||
* **MODEL**
|
||||
@ -74,6 +76,7 @@ reproduce it with a new artistic style. The algorithm takes three images
|
||||
to resemble the content of the content-image and the artistic style of the style-image.
|
||||
|
||||
Relevant outputs
|
||||
|
||||
* **EXECUTION**
|
||||
* **HYPER PARAMETERS**: Command line arguments
|
||||
* **MODEL**
|
||||
@ -100,7 +103,7 @@ Relevant outputs
|
||||
* **SCALARS**: Train and test loss scalars
|
||||
* **LOG**: Console standard output/error
|
||||
|
||||
### PyTorch with tensorboardX
|
||||
### PyTorch with tensorboardX - MNIST Train
|
||||
|
||||
[pytorch_tensorboardX.py](https://github.com/allegroai/trains/blob/master/examples/pytorch_tensorboardX.py)
|
||||
is an example of PyTorch MNIST training running with tensorboardX
|
||||
@ -168,13 +171,77 @@ Relevant outputs
|
||||
##### Toy Tensorflow FLAGS logging with absl
|
||||
|
||||
[absl_example.py](https://github.com/allegroai/trains/blob/master/examples/absl_example.py)
|
||||
is an example of toy Tensorflow FLAGS logging with absl package (*absl-py*)
|
||||
is an example of toy Tensorflow FLAGS logging with absl package (*absl-py*) coupled with parameters dictionary
|
||||
|
||||
Relevant outputs
|
||||
|
||||
* **EXECUTION**
|
||||
* **HYPER PARAMETERS**: Tensorflow flags (with 'TF_DEFINE/' prefix)
|
||||
* **RESULTS**
|
||||
* **LOG**: Console standard output/error
|
||||
|
||||
### TensorFlow MNIST Classifier with TensorBoard Reports
|
||||
|
||||
[tensorflow_mnist_with_summaries.py](https://github.com/allegroai/trains/blob/master/examples/tensorflow_mnist_with_summaries.py)
|
||||
is an example of Tensorflow MNIST with TensorBoard summary, model storage, and logging.
|
||||
|
||||
Relevant outputs
|
||||
|
||||
* **EXECUTION**
|
||||
* **HYPER PARAMETERS**: Command line arguments
|
||||
* **MODEL**
|
||||
* Output model (a link to the output model details in the *MODELS* page)
|
||||
* **RESULTS**
|
||||
* **SCALARS**: Network statistics across the training steps (e.g., cross entropy, dropout, and specific layer statistics)
|
||||
* **PLOTS**: Convolutional layer histogram
|
||||
* **DEBUG IMAGES**: Sample of the network input images
|
||||
* **LOG**: Console standard output/error
|
||||
|
||||
|
||||
# *Jupyter Notebook* Example
|
||||
|
||||
[jupyter.ipynb](https://github.com/allegroai/trains/blob/master/examples/jupyter.ipynb)
|
||||
is an example of integrating matplotlib and training with keras on
|
||||
*Jupyter Notebook*.
|
||||
This example connects a parameters dictionary, prints simple graphs and trains an MNIST classifier using Keras.
|
||||
|
||||
Relevant Outputs
|
||||
|
||||
* **EXECUTION**
|
||||
* **HYPER PARAMETERS**: Parameter dictionary
|
||||
* **MODEL**
|
||||
* Output model (a link to the output model details in the *MODELS* page)
|
||||
* Model Configuration
|
||||
* **RESULTS**
|
||||
* **SCALARS**: Training loss across iterations
|
||||
* **PLOTS**: Sine and circles plots, convolution weights histogram
|
||||
* **LOG**: Console standard output/error
|
||||
|
||||
|
||||
# Custom Examples
|
||||
|
||||
### Manual Reporting
|
||||
|
||||
[manual_reporting.py](https://github.com/allegroai/trains/blob/master/examples/manual_reporting.py)
|
||||
is an example of manually reporting graphs and statistics.
|
||||
|
||||
Relevant outputs
|
||||
|
||||
* **RESULTS**
|
||||
* **SCALARS**: Scalar graphs
|
||||
* **PLOTS**: Confusion matrix, histogram, 2D scatter plot, 3D scatter plot
|
||||
* **DEBUG IMAGES**: Uploaded example images
|
||||
* **LOG**: Console standard output/error
|
||||
|
||||
### Manual Model Configuration
|
||||
|
||||
[manual_model_config.py](https://github.com/allegroai/trains/blob/master/examples/manual_model_config.py)
|
||||
is an example of manually configuring a model, model storage, label enumeration values, and logging.
|
||||
|
||||
Relevant Outputs
|
||||
|
||||
* **MODEL**
|
||||
* Output model (a link to the output model details in the *MODELS* page, including **label enumeration** values)
|
||||
* Model Configuration
|
||||
* **RESULTS**
|
||||
* **LOG**: Console standard output/error
|
||||
|
File diff suppressed because one or more lines are too long
Loading…
Reference in New Issue
Block a user