Edit model_config example and add yaml sample (#419)

This commit is contained in:
pollfly 2021-08-11 14:10:07 +03:00 committed by GitHub
parent 8708967a5e
commit c7216a227b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 31 additions and 21 deletions

View File

@ -0,0 +1,3 @@
name: "michael"
occupation: "programmer"

View File

@ -1,41 +1,48 @@
# ClearML - Example of manual model configuration
#
import os
import json
import yaml
from clearml import Task, OutputModel
# Connecting ClearML with the current process,
# from here on everything is logged automatically
task = Task.init(project_name='examples', task_name='Model configuration example')
# Connect a local configuration file
config_file = os.path.join('data_samples', 'sample.json')
config_file = task.connect_configuration(config_file)
# then read configuration as usual, the backend will contain a copy of it.
# later when executing remotely, the returned `config_file` will be a temporary file
# containing a new copy of the configuration retrieved form the backend
# # model_config_dict = json.load(open(config_file, 'rt'))
# Connect a local configuration file in json format
config_file_json = 'data_samples/sample.json'
# In the web UI, this file will appear in the CONFIGURATION OBJECTS tab,
# under the "json file" subsection because of the `name` parameter entered here
task.connect_configuration(name="json file", configuration=config_file_json)
# Or Store dictionary of definition for a specific network design
# Read configuration as usual, the backend will contain a copy of it.
# When executing remotely, the returned `config_file_json` will be a temporary file
# that contains a new copy of the configuration retrieved form the backend
model_config_dictionary_json = json.load(open(config_file_json, 'rt'))
# Connecting a local configuration file in yaml format
config_file_yaml = 'data_samples/config_yaml.yaml'
task.connect_configuration(configuration=config_file_yaml, name="yaml file")
# Read configuration as usual
model_config_dictionary_yaml = yaml.load(open(config_file_yaml), Loader=yaml.FullLoader)
# Connecting a dictionary of definitions for a specific network design
model_config_dict = {
'value': 13.37,
'CHANGE ME': 13.37,
'dict': {'sub_value': 'string', 'sub_integer': 11},
'list_of_ints': [1, 2, 3, 4],
}
model_config_dict = task.connect_configuration(model_config_dict)
model_config_dict = task.connect_configuration(name='dictionary', configuration=model_config_dict)
# We now update the dictionary after connecting it, and the changes will be tracked as well.
# Update the dictionary after connecting it, and the changes will be tracked as well.
model_config_dict['new value'] = 10
model_config_dict['value'] *= model_config_dict['new value']
model_config_dict['CHANGE ME'] *= model_config_dict['new value']
# store the label enumeration of the training model
# Connecting label enumeration
labels = {'background': 0, 'cat': 1, 'dog': 2}
task.connect_label_enumeration(labels)
# Manually log a local model file
# Manually log a local model file, which will have the labels connected above
OutputModel().update_weights('my_best_model.bin')
# storing a model: Any saved model (keras / pytorch / tensorflow / etc.)
# will have the task network configuration and label enumeration
print('Any model stored from this point onwards, will contain both model_config and label_enumeration')
# Any saved model (keras / pytorch / tensorflow / etc.) will have the task network configuration and label enumeration
print('Any model stored from this point onwards, will contain both model_config and label_enumeration')