Add HyperParameterOptimizer.get_top_experiments_details(...) returns the hparams and metrics of the top performing experiments of an HPO (issue #473)

This commit is contained in:
allegroai 2021-11-26 16:37:19 +02:00
parent 9527b2ca03
commit c3b11b06f1

View File

@ -519,8 +519,8 @@ class SearchStrategy(object):
additional_filters={'page_size': int(top_k), 'page': 0})
return top_tasks
def get_top_experiments_id_metrics_pair(self, top_k, all_metrics=False):
# type: (int, bool) -> Sequence[(str, dict)]
def get_top_experiments_id_metrics_pair(self, top_k, all_metrics=False, only_completed=False):
# type: (int, bool, bool) -> Sequence[(str, dict)]
"""
Return a list of pairs (Task ID, scalar metric dict) of the top performing experiments.
Order is based on the controller ``Objective`` object.
@ -528,6 +528,7 @@ class SearchStrategy(object):
:param int top_k: The number of Tasks (experiments) to return.
:param all_metrics: Default False, only return the objective metric on the metrics dictionary.
If True, return all scalar metrics of the experiment
:param only_completed: return only completed Tasks. Default False.
:return: A list of pairs (Task ID, metric values dict), ordered by performance,
where index 0 is the best performing Task.
@ -570,24 +571,121 @@ class SearchStrategy(object):
),
]
"""
additional_filters = dict(page_size=int(top_k), page=0)
if only_completed:
additional_filters['status'] = ["completed"]
# noinspection PyProtectedMember
top_tasks_ids_metric = self._get_child_tasks_ids(
parent_task_id=self._job_parent_id or self._base_task_id,
order_by=self._objective_metric._get_last_metrics_encode_field(),
additional_filters={'page_size': int(top_k), 'page': 0},
additional_filters=additional_filters,
additional_fields=['last_metrics']
)
if all_metrics:
return [(i, {'{}/{}'.format(v['metric'], v['variant']): v
for variant in metric.values() for v in variant.values()}
) for i, metric in top_tasks_ids_metric]
title, series = self._objective_metric.get_objective_metric()
title, series = self._objective_metric.get_objective_metric() if not all_metrics else (None, None)
return [(i, {'{}/{}'.format(v['metric'], v['variant']): v
for variant in metric.values() for v in variant.values()
if v['metric'] == title and v['variant'] == series}
if all_metrics or v['metric'] == title and v['variant'] == series}
) for i, metric in top_tasks_ids_metric]
def get_top_experiments_details(
self,
top_k,
all_metrics=False,
all_hyper_parameters=False,
only_completed=False
):
# type: (int, bool, bool, bool) -> Sequence[(str, dict)]
"""
Return a list of dictionaries of the top performing experiments.
Example: [
{'task_id': Task-ID, 'metrics': scalar-metric-dict, 'hyper_parameters': Hyper-Parameters},
]
Order is based on the controller ``Objective`` object.
:param int top_k: The number of Tasks (experiments) to return.
:param all_metrics: Default False, only return the objective metric on the metrics dictionary.
If True, return all scalar metrics of the experiment
:param all_hyper_parameters: Default False. If True return all the hyper-parameters from all the sections.
:param only_completed: return only completed Tasks. Default False.
:return: A list of dictionaries ({task_id: '', hyper_parameters: {}, metrics: {}}), ordered by performance,
where index 0 is the best performing Task.
Example w/ all_metrics=False:
[
{
task_id: '0593b76dc7234c65a13a301f731958fa',
hyper_parameters: {'General/lr': '0.03', 'General/batch_size': '32'},
metrics: {
'accuracy per class/cat': {
'metric': 'accuracy per class',
'variant': 'cat',
'value': 0.119,
'min_value': 0.119,
'max_value': 0.782
},
}
},
]
Example w/ all_metrics=True:
[
{
task_id: '0593b76dc7234c65a13a301f731958fa',
hyper_parameters: {'General/lr': '0.03', 'General/batch_size': '32'},
metrics: {
'accuracy per class/cat': {
'metric': 'accuracy per class',
'variant': 'cat',
'value': 0.119,
'min_value': 0.119,
'max_value': 0.782
},
'accuracy per class/deer': {
'metric': 'accuracy per class',
'variant': 'deer',
'value': 0.219,
'min_value': 0.219,
'max_value': 0.282
},
}
},
]
"""
additional_filters = dict(page_size=int(top_k), page=0)
if only_completed:
additional_filters['status'] = ["completed"]
# noinspection PyProtectedMember
top_tasks_ids_metric_params = self._get_child_tasks_ids(
parent_task_id=self._job_parent_id or self._base_task_id,
order_by=self._objective_metric._get_last_metrics_encode_field(),
additional_filters=additional_filters,
additional_fields=['last_metrics', 'hyperparams']
)
# get hp_parameters:
hp_params = set(p.name for p in self._hyper_parameters)
title, series = self._objective_metric.get_objective_metric() if not all_metrics else (None, None)
return [
{
'task_id': tid,
'hyper_parameters': {
'{}/{}'.format(p.section, p.name): p.value
for params in (param_sections or {}).values() for p in (params or {}).values()
if all_hyper_parameters or '{}/{}'.format(p.section, p.name) in hp_params
},
'metrics': {
'{}/{}'.format(v['metric'], v['variant']): v for variant in metric.values()
for v in variant.values() if all_metrics or v['metric'] == title and v['variant'] == series
}
} for tid, metric, param_sections in top_tasks_ids_metric_params
]
def get_objective_metric(self):
# type: () -> (str, str)
"""
@ -1091,6 +1189,8 @@ class HyperParameterOptimizer(object):
# create a new Task, if we do not have one already
self._task = auto_connect_task if isinstance(auto_connect_task, Task) else Task.current_task()
self._readonly_task = \
isinstance(auto_connect_task, Task) and str(self._task.status) not in ('created', 'in_progress')
if not self._task and always_create_task:
base_task = Task.get_task(task_id=base_task_id)
self._task = Task.init(
@ -1110,7 +1210,7 @@ class HyperParameterOptimizer(object):
compute_time_limit=compute_time_limit,
optimizer_kwargs=optimizer_kwargs)
# make sure all the created tasks are our children, as we are creating them
if self._task:
if self._task and not self._readonly_task:
self._task.add_tags([self._tag])
if auto_connect_task:
optimizer_class, hyper_parameters, opts = self._connect_args(
@ -1369,6 +1469,80 @@ class HyperParameterOptimizer(object):
return []
return self.optimizer.get_top_experiments(top_k=top_k)
def get_top_experiments_details(
self,
top_k,
all_metrics=False,
all_hyper_parameters=False,
only_completed=False
):
# type: (int, bool, bool, bool) -> Sequence[(str, dict)]
"""
Return a list of dictionaries of the top performing experiments.
Example: [
{'task_id': Task-ID, 'metrics': scalar-metric-dict, 'hyper_parameters': Hyper-Parameters},
]
Order is based on the controller ``Objective`` object.
:param int top_k: The number of Tasks (experiments) to return.
:param all_metrics: Default False, only return the objective metric on the metrics dictionary.
If True, return all scalar metrics of the experiment
:param all_hyper_parameters: Default False. If True return all the hyper-parameters from all the sections.
:param only_completed: return only completed Tasks. Default False.
:return: A list of dictionaries ({task_id: '', hyper_parameters: {}, metrics: {}}), ordered by performance,
where index 0 is the best performing Task.
Example w/ all_metrics=False:
[
{
task_id: '0593b76dc7234c65a13a301f731958fa',
hyper_parameters: {'General/lr': '0.03', 'General/batch_size': '32'},
metrics: {
'accuracy per class/cat': {
'metric': 'accuracy per class',
'variant': 'cat',
'value': 0.119,
'min_value': 0.119,
'max_value': 0.782
},
}
},
]
Example w/ all_metrics=True:
[
{
task_id: '0593b76dc7234c65a13a301f731958fa',
hyper_parameters: {'General/lr': '0.03', 'General/batch_size': '32'},
metrics: {
'accuracy per class/cat': {
'metric': 'accuracy per class',
'variant': 'cat',
'value': 0.119,
'min_value': 0.119,
'max_value': 0.782
},
'accuracy per class/deer': {
'metric': 'accuracy per class',
'variant': 'deer',
'value': 0.219,
'min_value': 0.219,
'max_value': 0.282
},
}
},
]
"""
if not self.optimizer:
return []
return self.optimizer.get_top_experiments_details(
top_k=top_k,
all_metrics=all_metrics,
all_hyper_parameters=all_hyper_parameters,
only_completed=only_completed)
def get_optimizer(self):
# type: () -> SearchStrategy
"""
@ -1432,7 +1606,7 @@ class HyperParameterOptimizer(object):
def _connect_args(self, optimizer_class=None, hyper_param_configuration=None, **kwargs):
# type: (SearchStrategy, dict, Any) -> (SearchStrategy, list, dict)
if not self._task:
if not self._task or self._readonly_task:
logger.warning('Auto Connect turned on but no Task was found, '
'hyper-parameter optimization argument logging disabled')
return optimizer_class, hyper_param_configuration, kwargs
@ -1540,7 +1714,7 @@ class HyperParameterOptimizer(object):
# get task to report on.
cur_task = self._task or Task.current_task()
if cur_task:
if cur_task and not self._readonly_task:
task_logger = cur_task.get_logger()
# do some reporting
@ -1557,19 +1731,22 @@ class HyperParameterOptimizer(object):
{j.task_id() for j in self.optimizer.get_running_jobs()}
self._report_completed_status(completed_jobs, cur_completed_jobs, task_logger, title)
self._report_completed_tasks_best_results(set(completed_jobs.keys()), task_logger, title, counter)
self._auto_archive_low_performance_tasks(completed_jobs)
self._auto_archive_low_performance_tasks(completed_jobs)
# if we should leave, stop everything now.
if timeout < 0:
# we should leave
self.stop(wait_for_reporter=False)
return
if task_logger and counter:
if task_logger and counter and not self._readonly_task:
counter += 1
self._report_remaining_budget(task_logger, counter)
self._report_resources(task_logger, counter)
self._report_completed_status(completed_jobs, cur_completed_jobs, task_logger, title, force=True)
self._report_completed_tasks_best_results(set(completed_jobs.keys()), task_logger, title, counter)
self._auto_archive_low_performance_tasks(completed_jobs)
self._auto_archive_low_performance_tasks(completed_jobs)
def _report_completed_status(self, completed_jobs, cur_completed_jobs, task_logger, title, force=False):
job_ids_sorted_by_objective = self.__sort_jobs_by_objective(completed_jobs)